1
|
Guo Z, Yang N, Xu D. Enhancing active ingredient biosynthesis in Chinese herbal medicine: biotechnological strategies and molecular mechanisms. PeerJ 2025; 13:e18914. [PMID: 39950047 PMCID: PMC11823656 DOI: 10.7717/peerj.18914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
Background Chinese herbal medicine (CHM) is a fundamental component of traditional Chinese medical practice, offering a rich source of natural remedies with significant therapeutic potential. However, the scarcity of active ingredients and complex extraction procedures present substantial challenges to their widespread clinical application. This review aims to address this gap by exploring the potential of modern biotechnological advancements in enhancing the biosynthesis of these valuable compounds. Methodology The study takes a comprehensive approach, delving into the chemical composition of CHM's active ingredients and elucidating their biosynthetic pathways and molecular regulatory mechanisms. Additionally, it surveys recent progress in extraction methodologies and evaluates engineering strategies aimed at synthetic production. This multifaceted analysis forms the foundation for examining the role of synthetic biology in augmenting CHM's active ingredient synthesis. Results Our examination provides insights into the intricate biosynthetic pathways governing the formation of CHM's active ingredients, as well as the complex molecular regulatory networks that underlie these processes. Furthermore, the review highlights advancements in extraction techniques, demonstrating their ability to streamline and enhance the isolation of these compounds. Engineering approaches for synthetic production, including metabolic engineering and synthetic biology tools, are assessed for their potential to overcome natural limitations and scale up production. Conclusions By integrating insights from biosynthesis, molecular regulation, extraction methodologies, and synthetic biology, this review establishes a robust theoretical framework for enhancing the production of CHM's active ingredients. The proposed strategies and practical guidance aim to facilitate their broader utilization in modern medicine while promoting sustainability and accessibility within this invaluable medicinal heritage.
Collapse
Affiliation(s)
- Ziyi Guo
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ning Yang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Hou Y, Zhou H, Wang C, Xie C, Tian T, Li Y, Wang W, Yu Y, Zhou T. Identification of a Flavanone 2-Hydroxylase Involved in Flavone C-Glycoside Biosynthesis from Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27417-27428. [PMID: 39620353 DOI: 10.1021/acs.jafc.4c07456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Tea contains a variety of flavone C-glycosides, which are important compounds that distinguish tea cultivars and tea categories. However, the biosynthesis pathway of flavone C-glycosides in tea plant remains unknown, and the key enzymes involved have not been characterized. In this study, a liquid chromatography-mass spectrometry method to determine 9 flavone C-glycosides was developed, and the accumulation patterns of 9 flavone C-glycosides in tea plants were examined first. Then, an entry enzyme CsF2H for flavone C-glycoside biosynthesis was identified, which had four cytochrome P450-specific conserved motifs and was targeted to the endoplasmic reticulum. Correlation analysis indicated that the expression level of CsF2H was positively correlated with all contents of 9 flavone C-glycosides. The recombinant CsF2H could convert flavanone (naringenin) into the corresponding 2-hydroxyflavonone (2-hydroxynaringenin), rather than into flavone (apigenin). Heterologous coexpression of CsF2H and CsCGT1 in yeast revealed that the substrate naringenin could be enzymatically converted to flavone mono-C-glycosides vitexin and isovitexin under the catalytic control of CsF2H and CsCGT1 following dehydration. Gene-specific antisense oligonucleotide analysis suggested that suppressing CsF2H significantly reduced the levels of 9 flavone C-glycosides. Together, CsF2H is the first key enzyme that generates flavone C-glycosides through the 2-hydroxyflavanone biosynthesis pathway in tea plants.
Collapse
Affiliation(s)
- Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengyang Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Ruan H, Gao L, Fang Z, Lei T, Xing D, Ding Y, Rashid A, Zhuang J, Zhang Q, Gu C, Qian W, Zhang N, Qian T, Li K, Xia T, Wang Y. A flavonoid metabolon: cytochrome b 5 enhances B-ring trihydroxylated flavan-3-ols synthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1793-1814. [PMID: 38461478 DOI: 10.1111/tpj.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.
Collapse
Affiliation(s)
- Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Dawei Xing
- School of Biological and Environmental Engineering, Chaohu University, Chaohu, Anhui, 238024, China
| | - Yan Ding
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Arif Rashid
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Juhua Zhuang
- College of Tea Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qiang Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chunyang Gu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Niuniu Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tao Qian
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Kongqing Li
- College of Humanities and Social Development, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
4
|
Liao Y, Du W, Wan J, Fan J, Pi J, Wu M, Wei Y, Ouyang Z. Mining and functional characterization of NADPH-cytochrome P450 reductases of the DNJ biosynthetic pathway in mulberry leaves. BMC PLANT BIOLOGY 2024; 24:133. [PMID: 38395770 PMCID: PMC10885410 DOI: 10.1186/s12870-024-04815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND 1-Deoxynojirimycin (DNJ), the main active ingredient in mulberry leaves, with wide applications in the medicine and food industries due to its significant functions in lowering blood sugar, and lipids, and combating viral infections. Cytochrome P450 is a key enzyme for DNJ biosynthesis, its activity depends on the electron supply of NADPH-cytochrome P450 reductases (CPRs). However, the gene for MaCPRs in mulberry leaves remains unknown. RESULTS In this study, we successfully cloned and functionally characterized two key genes, MaCPR1 and MaCPR2, based on the transcriptional profile of mulberry leaves. The MaCPR1 gene comprised 2064 bp, with its open reading frame (ORF) encoding 687 amino acids. The MaCPR2 gene comprised 2148 bp, and its ORF encoding 715 amino acids. The phylogenetic tree indicates that MaCPR1 and MaCPR2 belong to Class I and Class II, respectively. In vitro, we found that the recombinant enzymes MaCPR2 protein could reduce cytochrome c and ferricyanide using NADPH as an electron donor, while MaCPR1 did not. In yeast, heterologous co-expression indicates that MaCPR2 delivers electrons to MaC3'H hydroxylase, a key enzyme catalyzing the production of chlorogenic acid from 3-O-p-coumaroylquinic acid. CONCLUSIONS These findings highlight the orchestration of hydroxylation process mediated by MaCPR2 during the biosynthesis of secondary metabolite biosynthesis in mulberry leaves. These results provided a foundational understanding for fully elucidating the DNJ biosynthetic pathway within mulberry leaves.
Collapse
Affiliation(s)
- Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Wenmin Du
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jiahe Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jilan Pi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Min Wu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China.
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China.
| |
Collapse
|
5
|
Istiandari P, Yasumoto S, Seki H, Fukushima EO, Muranaka T. Class I and II NADPH-cytochrome P450 reductases exhibit different roles in triterpenoid biosynthesis in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2023; 14:1214602. [PMID: 37621889 PMCID: PMC10445947 DOI: 10.3389/fpls.2023.1214602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are enzymes that play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations of the triterpene scaffold, CYPs require electrons transferred by NADPH-cytochrome P450 reductase (CPR), which is classified into two main classes, class I and class II, based on their structural difference. Lotus japonicus is a triterpenoids-producing model legume with one CPR class I gene (LjCPR1) and a minimum of two CPR class II genes (LjCPR2-1 and LjCPR2-2). CPR classes I and II from different plants have been reported to be involved in different metabolic pathways. By performing gene expression analyses of L. japonicus hairy root culture treated with methyl jasmonate (MeJA), this study revealed that LjCPR1, CYP716A51, and LUS were down-regulated which resulted in no change in betulinic acid and lupeol content. In contrast, LjCPR2s, bAS, CYP93E1, and CYP72A61 were significantly upregulated by MeJA treatment, followed by a significant increase of the precursors for soyasaponins, i.e. β-amyrin, 24-OH β-amyrin, and sophoradiol content. Triterpenoids profile analysis of LORE1 insertion and hairy root mutants showed that the loss of the Ljcpr2-1 gene significantly reduced soyasaponins precursors but not in Ljcpr1 mutants. However, Ljcpr1 and Ljcpr2-1 mutants showed a significant reduction in lupeol and oleanolic, ursolic, and betulinic acid contents. Furthermore, LjCPR1, but not LjCPR2, was crucial for seed development, supporting the previous notion that CPR class I might support plant basal metabolism. This study suggests that CPR classes I and II play different roles in L. japonicus triterpenoid biosynthesis.
Collapse
Affiliation(s)
- Pramesti Istiandari
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Plant Translational Research Group, Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|