1
|
Zhang T, An X, Cui G, Ma H, He X, Wang M. Catalyst-Free Selective Synthesis of E-Tetrasubstituted Olefins via Tandem Reaction of 3-Acetyl-4-phenyl-1-oxaspiro[4.5]deca-3,6,9-triene-2,8-dione with Amine, C-C Bond Breakage, and Proton Transfer. J Org Chem 2025; 90:3322-3333. [PMID: 39996461 DOI: 10.1021/acs.joc.4c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The Z- or E-selective syntheses of tetrasubstituted olefins present big challenges. Tremendous efforts are ongoing to overcome this issue, especially for acyclic structures. In this work, an E-stereoselective synthetic method of tetrasubstituted olefins through tandem reaction of 1,4-Michael addition of 3-acetyl-4-phenyl-1-oxaspiro[4.5]deca-3,6,9-triene-2,8-dione with amine, C-C bond breakage, and proton transfer by intermolecular hydrogen bonds was revealed with excellent atom economy and without catalysts and additives. A diverse set of E-tetrasubstituted olefins were obtained in 43% to 93% yields with excellent functional group tolerance for late-stage modifications of complex drug molecules. The reaction mechanism was proposed based on the deuterium-labeling experiment and density functional theory (DFT) calculation.
Collapse
Affiliation(s)
- Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinkun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Guoen Cui
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xie He
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Moghadam ES, Al-Sadi AM, Moghadam MS, Bayati B, Talebi M, Amanlou M, Amini M, Abdel-Jalil R. Benzimidazole-acrylonitrile hybrid derivatives act as potent urease inhibitors with possible fungicidal activity. Future Med Chem 2024; 16:2151-2168. [PMID: 39297549 PMCID: PMC11559371 DOI: 10.1080/17568919.2024.2393570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/12/2024] [Indexed: 11/13/2024] Open
Abstract
Aim: A series of benzimidazole-acrylonitrile derivatives TM1-TM53 were designed with urease inhibition approach.Materials & methods: TM1-TM53 were synthesized and characterized (1H Nuclear Magnetic Resonance (NMR), 13C NMR, Mass Spectroscopy (MS) and IR) and subjected to urease inhibition assay using commercial assay kit. A molecular docking study was also performed using Autodock tool software.Results: Except six compounds, target molecules exhibited a higher urease inhibition effect (IC50: 1.22-28.45 μM) than hydroxyurea (IC50: 100 μM). kinetic study on TM11, clarified its mode of action as a mixed inhibitor. A molecular docking study on TM6, TM11 and TM21, was performed and the results showed the main residues inside the active site of the enzyme. All TM1-TM53 were also studied in silico using molecular docking techniques to evaluate their potential to inhibit succinate dehydrogenase in comparison to fluxapyroxad as standard. Docking study revealed the high potential of TM1-TM53 as a fungicides.Conclusion: Obtained results exhibited the high activity of benzimidazole-acrylonitrile derivatives as urease inhibitors and their possible potential as fungicide agents. So, it will be beneficial to do more bioactivity investigation on this family of compounds.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural & Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Massoud Amanlou
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohsen Amini
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman
| |
Collapse
|
3
|
Zhang Y, Chen Y, Xun X, Chen S, Liu Y, Wang Q. Design, Synthesis, Acaricidal Activities, and Structure-Activity Relationship Studies of Oxazolines Containing Ether Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13538-13544. [PMID: 36224098 DOI: 10.1021/acs.jafc.2c04628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To develop highly efficient and low cost acaricides, a series of 2,4-diphenyl-1,3-oxazolines containing an ether moiety at the para position of the 4-phenyl group were synthesized from different alcohols and phenols. The bioassay results showed that most of the compounds, especially the short-chain alkyl ethers, exhibited excellent acaricidal activity against both the larvae and the eggs of Tetranychus cinnabarinus. In particular, the n-propyl ether compound Ic possessed much better larvicidal activity (LC50 = 0.0015 mg/L) and ovicidal activity (LC50 = 0.0008 mg/L) than commercial acaricide etoxazole (LC50 = 0.0145 and 0.02 mg/L for larvae and eggs, respectively). In addition, some compounds also exhibited insecticidal activity, especially compound Iw (4-CF3-phenyl ether) showed higher mortality than etoxazole against Mythimna separata, Helicoverpa armigera, and Pyrausta nubilalis. Considering the high acaricidal activity and relatively low cost, Ic was worthy of further study as an acaricide agent. An alternative synthetic route for the large-scale synthesis of Ic was then studied.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xiwei Xun
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Shilin Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Advancement of Phenoxypyridine as an Active Scaffold for Pesticides. Molecules 2022; 27:molecules27206803. [PMID: 36296394 PMCID: PMC9610772 DOI: 10.3390/molecules27206803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Phenoxypyridine, the bioisostere of diaryl ethers, has been widely introduced into bioactive molecules as an active scaffold, which has different properties from diaryl ethers. In this paper, the bioactivities, structure-activity relationships, and mechanism of compounds containing phenoxypyridine were summarized, which may help to explore the lead compounds and discover novel pesticides with potential bioactivities.
Collapse
|