1
|
Bonacci S, Cione E, Coscarella M, Nardi M, Scarpelli R, Simeonov S, Procopio A. Selective Lipophilization of Natural Phenolic Alcohols Induced by In Situ Choline Chloride-Based Natural Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27841-27849. [PMID: 39651870 DOI: 10.1021/acs.jafc.4c09446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In this scientific work, a novel and green method for selective lipophilization of EVOO's bioactive phenolic alcohols (PAs), namely, tyrosol, hydroxytyrosol, and its metabolite homovanillyl alcohol as fatty acid esters, is elucidated. The PAs have been employed as hydrogen bond donors in the formation of natural deep eutectic solvents (NADES) with choline chloride (ChCl). The fast and cheap esterification method by in situ formation of choline chloride-based deep eutectic solvents promotes the derivatization of PAs with various fatty acids as acylating agents in the absence of organic solvents and catalysts. Furthermore, given the growing interest in the application of NADES formed by bioactive molecules in the pharmacological and cosmetic fields, we analyzed the activity of antioxidant enzymes, superoxide dismutase, and glutathione S-transferase of three chemical formulations obtained after the formation of PA-oleate in the H2O2-treated HaCat human keratinocytes cell line, assessing also their toxicity via the MTT assay.
Collapse
Affiliation(s)
- Sonia Bonacci
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Rende, CS 88036, Italy
- GalaScreen Laboratories, University of Calabria, Arcavacata di Rende, Rende, CS 88036, Italy
| | - Mario Coscarella
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Monica Nardi
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Rosa Scarpelli
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| | - Svilen Simeonov
- Head of Laboratory Organic Synthesis and Stereochemistry Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Antonio Procopio
- AGreen Food Laboratory Health Sciences Department, Magna Græcia University, Germaneto, CZ 88100, Italy
| |
Collapse
|
2
|
Medrano-Padial C, Pérez-Novas I, Domínguez-Perles R, García-Viguera C, Medina S. Bioaccessible Phenolic Alkyl Esters of Wine Lees Decrease COX-2-Catalyzed Lipid Mediators of Oxidative Stress and Inflammation in a Time-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19016-19027. [PMID: 39145698 PMCID: PMC11363137 DOI: 10.1021/acs.jafc.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Lipophenols, phenolic compounds esterified with fatty alcohols or fatty acids, provide greater health benefits upon dietary ingestion of plant-based foods than unesterified (poly)phenols. Based on this premise, the present study aimed to demonstrate the role of gastrointestinal enzymes (pepsin, pancreatin, and pancreatic lipase) in releasing alkyl gallates and trans-caffeates from wine lees, providing bioactive compounds with enhanced capacities against oxidative stress (OS) and para-inflammation. The UHPLC-ESI-QqQ-MS/MS-based analysis revealed ethyl gallate and ethyl trans-caffeate as the most prominent compounds (1.675 and 0.872 μg/g dw, respectively), while the bioaccessibility of the derivatives of gallic and caffeic acids was dependent on the alkyl chain properties. The de novo formation of alkyl gallates during gastric and intestinal digestion resulted from intestinal enzyme activity. Moreover, the in vitro capacity of bioaccessible alkyl esters of gallic and trans-caffeic acids to reduce cyclooxygenase-2 concentration and modulate oxilipins related to OS (8-iso-PGF2α) and inflammation (PGF2α and PGE2) was demonstrated in a time-dependent manner. In conclusion, the presence of alkyl esters of gallic and trans-caffeic acids in wine lees and their subsequent formation during digestion of this byproduct emphasize their value as a source of antioxidant and anti-inflammatory compounds, encouraging the consideration of wine lees as a valuable ingredient for health-promoting coproducts.
Collapse
Affiliation(s)
- Concepción Medrano-Padial
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Irene Pérez-Novas
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
3
|
Wang X, Wang Q, Yu J, Guo X, Tong P, Yin F, Liu X, Zhou D. The potential of hydroxytyrosol fatty acid esters to enhance oral bioavailabilities of hydroxytyrosol and fatty acids: Continuous and slow-release ability in small intestine and blood. Food Chem 2023; 422:136246. [PMID: 37126954 DOI: 10.1016/j.foodchem.2023.136246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
HPLC-UV analysis in rat everted gut sac and in vitro simulated digestion models indicated that hydroxytyrosol fatty acid esters (HTy-Es) could be hydrolyzed by pancreatic lipase to slow-release of free fatty acids (FAs) and HTy. Meanwhile, the HTy-Es, the liberated FAs and the HTy could cross the membrane and were transported into blood circulation. HTy-Es were further hydrolyzed by carboxylesterase in in vitro rat plasma hydrolysis model, which also showed slow-release of FAs (C1-C4) and HTy. Especially, the rates of hydrolysis and transport initially increased and then decreased with the increasing alkyl chain length. Besides, the above rates of the HTy-Es with a straight chain were greater than those of its isomer with a branched chain. Therefore, the above-mentioned continuous and slow-release of FAs and HTy in small intestine and blood clearly demonstrated that HTy-Es would be an effective approach to enhance oral bioavailabilities of free fatty acids and hydroxytyrosol.
Collapse
Affiliation(s)
- Xinmiao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Qian Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jinghan Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xu Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Peiyong Tong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
4
|
Medina S, Auñón D, Lehoux J, Durand T, Crauste C, Gil-Izquierdo Á. Hydroxytyrosol fatty acid esters as new candidate markers for detecting olive oil inadequate storage conditions by UHPLC-QqQ-MS/MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Crauste C, Galano JM, Guy A, Lehoux J, Durand T, Balas L. Synthesis of fatty acid bioconjugates and related derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Céline Crauste
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - jean-Marie Galano
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Alexandre Guy
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Jordan Lehoux
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Thierry Durand
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Laurence Balas
- UMR 5247: Institut des Biomolecules Max Mousseron Synthesis of bioactive lipids 1919 route de Mende 34293 Montpellier Cedex FRANCE
| |
Collapse
|