1
|
Wang H, Zhao T, Zhuang W. Cystathionine γ-lyase is an essential biocontrol-positive regulator of Trichoderma gamsii strain TC788. Microbiol Res 2025; 298:128218. [PMID: 40398010 DOI: 10.1016/j.micres.2025.128218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/19/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Some Trichoderma strains have been widely used in agriculture due to their biological control functions against plant pathogens. However, only a few intracellular biocontrol-related factors of them were explored. In this study, T. gamsii strain TC788 was discovered possessing comprehensive antagonistic capacity to the fungal phytopathogen Rhizoctonia solani causing damping-off disease of pepper, in which cystathionine γ-lyase is proved to be an essential biocontrol positive regulator as evidenced by combined analyses of transcriptome and proteome, proteins interaction network, and gene homologous recombination. Overexpression of cystathionine γ-lyase significantly up-regulated expression levels of six pathway proteins and enzyme activities of secreted proteins associated with biocontrol. It also increased contents of cysteine and hydrogen sulfide in enriched pathway of cysteine and methionine metabolism, and improved concentration of the main volatile organic compound, 6‑pentyl‑2H‑pyran‑2‑one, by 4.18 times. Pot experiments further confirmed that overexpressed strain of TC788 enhanced inhibiting ability against R. solani, promoted growth indicators, and induced systemic resistance of pepper seedlings compared with wild type strain. This work provides theoretical bases of biocontrol effects performed by strain TC788 against the phytopathogen, and explores preliminarily interaction between the strain and pepper plant.
Collapse
Affiliation(s)
- Hengxu Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyou Zhao
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Zhuang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Zhang Y, Liang J, Shi J, Yuan W, Li X, Ding C. Applications of endophytic fungi in plant disease control. Arch Microbiol 2025; 207:117. [PMID: 40205240 DOI: 10.1007/s00203-025-04303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
Diseases caused by pathogenic microorganisms (bacteria, fungi, and viruses) have resulted in the quality and yield of crops, which has seriously affected the development of the agricultural economy. The prolonged use of chemical fungicides for prevention and control can lead to environmental pollution, hindering the sustainable development of safe and eco-friendly agriculture while also promoting the resistance of pathogenic microorganisms. Nevertheless, non-pathogenic endophytic fungi that form symbiotic relationships with plants still exhibit significant antagonistic effects on pathogenic microorganisms, even in small concentrations. These fungi pose no threat to human health and are highly beneficial to the ecological environment, making them an ideal alternative to chemical fungicides. They are increasingly being recognized and have been subjected to comprehensive research. Based on this, this article summarizes the types of endophytic fungi with biocontrol effects in recent years. It focuses on elucidating the mechanisms of their biocontrol from physiological and molecular perspectives. In addition, the application and development challenges of biocontrol agents (BCAs) derived from these fungi are also discussed, including difficulties in elucidating their mechanisms of action during research and development, challenges in strain selection and improvement, difficulties in controlling environmental adaptability, and stringent storage conditions. The aim is to develop more effective endophytic fungi as emerging biocontrol resources for agricultural production.
Collapse
Affiliation(s)
- Yang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingru Liang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiajie Shi
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenhui Yuan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xintao Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changhong Ding
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
3
|
Song HJ, Li XF, Pei XR, Sun ZB, Pan HX. Transcription Factors in Biocontrol Fungi. J Fungi (Basel) 2025; 11:223. [PMID: 40137261 PMCID: PMC11943155 DOI: 10.3390/jof11030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Transcription factors are extensively found in fungi and are involved in the regulation of multiple biological processes, including growth, development, conidiation, morphology, stresses tolerance, and virulence, as well as the production of secondary metabolites. Biocontrol is a complex biological process through which several biocontrol behaviors, such as the secretion of cell wall-degrading enzymes and the production of secondary metabolites, are regulated by transcription factors. To date, biocontrol-related transcription factors have been reported in several biocontrol fungi, such as Beauveria bassiana, Clonostachys rosea, Coniothyrium minitans, and different species in the genera Metarhizium, Trichoderma, and Arthrobotrys. However, comprehensive reviews summarizing and analyzing transcription factors with biocontrol potential in these fungi are scarce. This review begins by giving a basic overview of transcription factors and their functions. Then, the role of biocontrol-related transcription factors in biocontrol fungi is discussed. Lastly, possible approaches for further work on transcription factors in biocontrol fungi are suggested. This review provides a basis for further elaborating the molecular mechanisms of transcription factors in the context of biocontrol.
Collapse
Affiliation(s)
| | | | | | - Zhan-Bin Sun
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Han-Xu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Maluleke E, Jolly NP, Patterton HG, Setati ME. Unravelling the transcriptomic dynamics of Hyphopichia pseudoburtonii in co-culture with Botrytis cinerea. PLoS One 2025; 20:e0316713. [PMID: 39808607 PMCID: PMC11731708 DOI: 10.1371/journal.pone.0316713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood. This study employed RNA sequencing to assess the temporal changes in H. pseudoburtonii Y963 gene expression patterns when co-cultivated with Botrytis cinerea. Genes differentially expressed in H. pseudoburtonii in co-culture with B. cinerea, compared to the monoculture were evaluated after 24, 48, and 120 h of growth. Up-regulation of genes encoding major core histones (H2A, H3, H4) and ribosomes in the first 24 h suggested an abundance of cells in the S phase of the cell cycle. At 48 h, the genes up-regulated highlight mitotic cell cycle activity and induction of filamentous growth, while in later stages, up-regulation of genes encoding high affinity transporters of sugars, copper and iron, as well as those involved in the retention and utilization of siderophore-iron was evident. Altogether, the data allude to competition for space and nutrients as key mechanisms activated in H. pseudoburtonii in the presence of B. cinerea. This research offers new insights into H. pseudoburtonii transcriptomic response to B. cinerea and illuminates the adaptive strategies and molecular mechanisms behind its antifungal activity.
Collapse
Affiliation(s)
- Evelyn Maluleke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Neil Paul Jolly
- Post Harvest and Agro-Processing Technologies, ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Stellenbosch, South Africa
| | - Hugh-George Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Mathabatha Evodia Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Li L, Chang J, Xu Z, Chu L, Zhang J, Xing Q, Bao Z. Functional allocation of Mitogen-activated protein kinases (MAPKs) unveils thermotolerance in scallop Argopecten irradians irradians. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106750. [PMID: 39293275 DOI: 10.1016/j.marenvres.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three MAPK genes: AiERK, Aip38, and AiJNK. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of AiMAPKs were ubiquitous, with significant increases in AiERK expression observed at the umbo larval stage (3.09-fold), while Aip38 and AiJNK were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of AiMAPKs were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, AiMAPKs expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of AiMAPKs genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.
Collapse
Affiliation(s)
- Linshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaosong Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
6
|
Wang Y, Wang J, Wang W. Identification of mycoparasitism-related genes in Trichoderma harzianum T4 that are active against Colletotrichum musae. Arch Microbiol 2023; 206:29. [PMID: 38117327 DOI: 10.1007/s00203-023-03767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Trichoderma harzianum is a well-known biological control agent (BCA) that shows great potential in controlling many pathogenic fungi. To screen for genes associated with mycoparasitism, we sequenced and analyzed the transcriptome of T. harzianum T4 grown in dual culture with Colletotrichum musae. We analyzed differentially expressed genes (DEGs) of Trichoderma harzianum T4 in three different culture periods: before contact (BC), during contact (C) and after contact (AC). A total of 1453 genes were significantly differentially expressed compared to when T. harzianum T4 was cultured alone. During the three periods of double culture of T. harzianum T4 with C. musae, 74, 516, and 548 genes were up-regulated, respectively, and 11, 315, and 216 genes were down-regulated, respectively. The DEGs were screened using GO and KEGG enrichment analyses combined with differential expression multiples. Six gene categories related to mycoparasitism were screened: (a) pathogen recognition and signal transduction, (b) hydrolases, (c) ribosomal proteins and secreted proteins, (d) multidrug-resistant proteins and transporters, (e) heat shock proteins and detoxification, and (f) oxidative stress and antibiotics-related genes. The expression levels of 24 up-regulated genes during T. harzianum T4's antagonistic interaction with C. musae were detected via real-time fluorescence quantitative PCR (RT-qPCR). This study provided information on the transcriptional expression of T. harzianum T4 against C. musae. These results may help us to further understand the mechanism of mycoparasitism, which can provide a potential molecular target for improving the biological control capacity of T. harzianum T4.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China.
| |
Collapse
|
7
|
Liu Z, Li Y, Hou J, Liu T. Transboundary milRNAs: Indispensable molecules in the process of Trichoderma breve T069 mycoparasitism of Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105599. [PMID: 37945247 DOI: 10.1016/j.pestbp.2023.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Despite the increasing number of fungal microRNA-like small RNAs (milRNAs) being identified and reported, profiling of milRNAs in biocontrol fungi and their roles in the mycoparasitism of pathogenic fungi remains limited. Therefore, in this study, we constructed a GFP fluorescence strain to evaluate the critical period of mycoparasitism in the interaction system between T. breve T069 and B. cinerea. The results showed that the early stage of Trichoderma mycoparasitism occurred 12 h after hyphal contact and was characterized by hyphal parallelism, whereas the middle stage lasted 36 h was characterized by wrapping. The late stage of mycoparasitism occurred at 72 h was characterized by the degradation of B. cinerea mycelia. We subsequently identified the sRNAs of T. breve T069 and B. cinerea during the critical period of mycoparasitism using high-throughput sequencing. In ltR1, 45 potential milRNA targets were identified for 243 genes, and 73 milRNAs targeted 733 genes in ltR3. Additionally, to identify potential transboundary miRNAs in T. breve T069, we screened for miRNAs that were exclusively expressed and had precursor structures in the T. breve T069 genome but were absent in the B. cinerea genome. Next, we predicted the target genes of B. cinerea. Our findings showed that 14 potential transboundary milRNAs from T. breve T069 targeted 41 genes in B. cinerea. Notably, cme-MIR164a-p5_1ss17CT can target 15 genes, including Rim15 (BCIN_15g00280), Nop53 (BCIN_12g03770), Skn7 (BCIN_02g08650), and Vel3 (BCIN_03g06410), while ppe-MIR477b-p3_1ss11TC targeted polyketide synthase (BCIN_03g04360, PKS3). The target gene of PC-5p-27397_41 was a non-ribosomal peptide synthetase (BCIN_01g03730, Bcnrps6). PC-3p-0029 (Tri-milR29) targeted chitin synthetase 7. These genes play crucial roles in normal mycelial growth and pathogenicity of B. cinerea. In conclusion, this study highlights the significance of milRNAs in Trichoderma mycoparasitism of B. cinerea. This discovery provides a new strategy for the application of miRNAs in the prevention and treatment of fungal pathogens.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Yuejiao Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Jumei Hou
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China.
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China.
| |
Collapse
|
8
|
Xie M, Bai N, Yang X, Liu Y, Zhang KQ, Yang J. Fus3 regulates asexual development and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. iScience 2023; 26:107404. [PMID: 37609635 PMCID: PMC10440713 DOI: 10.1016/j.isci.2023.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) Fus3 is an essential regulator of cell differentiation and virulence in fungal pathogens of plants and animals. However, the function and regulatory mechanism of MAPK signaling in nematode-trapping (NT) fungi remain largely unknown. NT fungi can specialize in the formation of "traps", an important indicator of transition from a saprophytic to a predatory lifestyle. Here, we characterized an orthologous Fus3 in a typical NT fungus Arthrobotrys oligospora using multi-phenotypic analysis and multi-omics approaches. Our results showed that Fus3 plays an important role in asexual growth and development, conidiation, stress response, DNA damage, autophagy, and secondary metabolism. Importantly, Fus3 plays an indispensable role in hyphal fusion, trap morphogenesis, and nematode predation. Moreover, we constructed the regulatory networks of Fus3 by means of transcriptomic and yeast two-hybrid techniques. This study provides insights into the mechanism of MAPK signaling in asexual development and pathogenicity of NT fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
- School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, P.R. China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
9
|
Hua Y, Liu Y, Li L, Liu G. Activation of hypermethylated P2RY1 mitigates gastric cancer by promoting apoptosis and inhibiting proliferation. Open Life Sci 2023; 18:20220078. [PMID: 36879646 PMCID: PMC9985447 DOI: 10.1515/biol-2022-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 03/06/2023] Open
Abstract
The P2RY1 receptor is known to cause cancer by activating the ERK signal pathway, and its DNA methylation status and corresponding regulatory mechanism remain unknown. This study used the DNA methylation chip to profile the genome-wide DNA methylation level in gastric cancer tissues. The proliferation and apoptosis of the SGC7901 gastric cancer cell line were determined after treatment with a selective P2RY1 receptor agonist, MRS2365. The promoter region of P2RY1 was found to be highly methylated with four hypermethylated sites (|Δβ value| > 0.2) in diffuse gastric cancer and was validated by bioinformatics analysis in the TCGA database. Also, immunohistochemical staining data obtained from the HPA database demonstrated the downregulated expression of proteins encoded by P2RY1 in stomach cancer tissue. The analysis of MRS2365-treated cells by annexin V/propidium iodide staining and caspase-3 activity assays indicated the induction of apoptosis in SGC7901 cells. The P2RY1 receptor activation in human SGC7901 gastric cancer cells via the MRS2365 agonist induced apoptosis and reduced cell growth. High DNA methylation in the promoter region of P2RY1 might have contributed to the reduced expression of P2RY1's mRNA, which was likely responsible for the "aggressive" nature of the diffuse gastric cancer.
Collapse
Affiliation(s)
- Yinggang Hua
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Yanling Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Long Li
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|