1
|
Orgaz C, Sánchez-Ruiz A, Colmenarejo G. Identifying and Filling the Chemobiological Gaps of Gut Microbial Metabolites. J Chem Inf Model 2024; 64:6778-6798. [PMID: 39165172 DOI: 10.1021/acs.jcim.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Human gut microbial metabolites are currently undergoing much research due to their involvement in multiple biological processes that are important for health, including immunity, metabolism, nutrition, and the nervous system. Metabolites exert their effect through interaction with host and bacterial proteins, suggesting the use of "metabolite-mimetic" molecules as drugs and nutraceutics. In the present work, we retrieve and analyze the full set of published interactions of these compounds with human and microbiome-relevant proteins and find patterns in their structure, chemical class, target class, and biological origins. In addition, we use virtual screening to expand (more than 4-fold) the interactions, validate them with retrospective analyses, and use bioinformatic tools to prioritize them based on biological relevance. In this way, we fill many of the chemobiological gaps observed in the published data. By providing these interactions, we expect to speed up the full clarification of the chemobiological space of these compounds by suggesting many reliable predictions for fast, focused experimental testing.
Collapse
Affiliation(s)
- Cristian Orgaz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| | - Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| |
Collapse
|
2
|
Tan L, Hirte S, Palmacci V, Stork C, Kirchmair J. Tackling assay interference associated with small molecules. Nat Rev Chem 2024; 8:319-339. [PMID: 38622244 DOI: 10.1038/s41570-024-00593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Biochemical and cell-based assays are essential to discovering and optimizing efficacious and safe drugs, agrochemicals and cosmetics. However, false assay readouts stemming from colloidal aggregation, chemical reactivity, chelation, light signal attenuation and emission, membrane disruption, and other interference mechanisms remain a considerable challenge in screening synthetic compounds and natural products. To address assay interference, a range of powerful experimental approaches are available and in silico methods are now gaining traction. This Review begins with an overview of the scope and limitations of experimental approaches for tackling assay interference. It then focuses on theoretical methods, discusses strategies for their integration with experimental approaches, and provides recommendations for best practices. The Review closes with a summary of the critical facts and an outlook on potential future developments.
Collapse
Affiliation(s)
- Lu Tan
- Drug Discovery Sciences, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Steffen Hirte
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
| | - Vincenzo Palmacci
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
| | - Conrad Stork
- Department of Informatics, Center for Bioinformatics, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
- BASF SE, Ludwigshafen am Rhein, Germany
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, Department for Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Avellaneda-Tamayo JF, Chávez-Hernández AL, Prado-Romero DL, Medina-Franco JL. Chemical Multiverse and Diversity of Food Chemicals. J Chem Inf Model 2024; 64:1229-1244. [PMID: 38356237 PMCID: PMC10900296 DOI: 10.1021/acs.jcim.3c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Food chemicals have a fundamental role in our lives, with an extended impact on nutrition, disease prevention, and marked economic implications in the food industry. The number of food chemical compounds in public databases has substantially increased in the past few years, which can be characterized using chemoinformatics approaches. We and other groups explored public food chemical libraries containing up to 26,500 compounds. This study aimed to analyze the chemical contents, diversity, and coverage in the chemical space of food chemicals and additives and, from here on, food components. The approach to food components addressed in this study is a public database with more than 70,000 compounds, including those predicted via omics techniques. It was concluded that food components have distinctive physicochemical properties and constitutional descriptors despite sharing many chemical structures with natural products. Food components, on average, have large molecular weights and several apolar structures with saturated hydrocarbons. Compared to reference databases, food component structures have low scaffold and fingerprint-based diversity and high structural complexity, as measured by the fraction of sp3 carbons. These structural features are associated with a large fraction of macronutrients as lipids. Lipids in food components were decompiled by an analysis of the maximum common substructures. The chemical multiverse representation of food chemicals showed a larger coverage of chemical space than natural products and FDA-approved drugs by using different sets of representations.
Collapse
Affiliation(s)
- Juan F. Avellaneda-Tamayo
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Ana L. Chávez-Hernández
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Diana L. Prado-Romero
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department
of Pharmacy, School of Chemistry, Universidad
Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Gil-Pichardo A, Sánchez-Ruiz A, Colmenarejo G. Analysis of metabolites in human gut: illuminating the design of gut-targeted drugs. J Cheminform 2023; 15:96. [PMID: 37833792 PMCID: PMC10571276 DOI: 10.1186/s13321-023-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Gut-targeted drugs provide a new drug modality besides that of oral, systemic molecules, that could tap into the growing knowledge of gut metabolites of bacterial or host origin and their involvement in biological processes and health through their interaction with gut targets (bacterial or host, too). Understanding the properties of gut metabolites can provide guidance for the design of gut-targeted drugs. In the present work we analyze a large set of gut metabolites, both shared with serum or present only in gut, and compare them with oral systemic drugs. We find patterns specific for these two subsets of metabolites that could be used to design drugs targeting the gut. In addition, we develop and openly share a Super Learner model to predict gut permanence, in order to aid in the design of molecules with appropriate profiles to remain in the gut, resulting in molecules with putatively reduced secondary effects and better pharmacokinetics.
Collapse
Affiliation(s)
- Alberto Gil-Pichardo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Sánchez-Ruiz A, Colmenarejo G. Systematic Analysis and Prediction of the Target Space of Bioactive Food Compounds: Filling the Chemobiological Gaps. J Chem Inf Model 2022; 62:3734-3751. [PMID: 35938782 DOI: 10.1021/acs.jcim.2c00888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food compounds and their molecular interactions are crucial for health and provide new chemotypes and targets for drug and nutraceutic design. Here, we retrieve and analyze the complete set of published interactions of food compounds with human proteins using the FooDB as a compound set and ChEMBL as a source of interactions. The data are analyzed in terms of 19 target classes and 19 compound classes, showing a small fraction of target assignment for the compounds (1.6%) and unraveling multiple gaps in the chemobiological space for these molecules. By using well-established cheminformatic approaches [similarity ensemble approach (SEA) combined with the maximum Tanimoto coefficient to the nearest bioactive, "SEA + TC"], we achieve a much enhanced target assignment (64.2%), filling many of the gaps with target hypothesis for fast focused testing. By publishing these data sets and analyses, we expect to provide a set of resources to speed up the full clarification of the chemobiological space of food compounds, opening new opportunities for drug and nutraceutic design.
Collapse
Affiliation(s)
- Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| |
Collapse
|