1
|
Zheng X, Mo W, Zuo Z, Shi Q, Chen X, Zhao X, Han J. From Regulation to Application: The Role of Abscisic Acid in Seed and Fruit Development and Agronomic Production Strategies. Int J Mol Sci 2024; 25:12024. [PMID: 39596092 PMCID: PMC11593364 DOI: 10.3390/ijms252212024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Abscisic acid (ABA) is a crucial plant hormone that plays a decisive role in regulating seed and fruit development and is becoming increasingly important in agricultural applications. This article delves into ABA's regulatory functions in plant growth, particularly during the stages of seed and fruit development. In the seed phase, elevated ABA levels help maintain seed dormancy, aiding seed survival under unfavorable conditions. During fruit development, ABA regulates pigment synthesis and sugar accumulation, influencing the nutritional value and market quality of the fruit. This article highlights three main strategies for applying ABA in agricultural production: the use of ABA analogs, the development of ABA signal modulators, and breeding techniques based on ABA signaling. ABA analogs can mimic the natural functions of ABA, while ABA signal modulators, including enhancers and inhibitors, are used to finely tune plant responses to ABA, optimizing crop performance under specific growth conditions. Furthermore, breeding strategies based on ABA signaling aim to select crop varieties that effectively utilize ABA pathways through genetic engineering and other technologies. ABA is not only a key regulator of plant growth and development but also holds great potential for modern agricultural practices.
Collapse
Affiliation(s)
- Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Xiaoyu Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Xuelai Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| |
Collapse
|
2
|
Tang X, Chen M, Li X, Zhang X, Wang P, Xu Y, Li J, Qin Z. Synthesis, Plant Growth Regulatory Activity, and Transcriptome Analysis of Novel Opabactin Analogs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597654 DOI: 10.1021/acs.jafc.3c09429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Abscisic acid (ABA), a phytohormone, and its analogs have been found to enhance plant resistance to various biotic and abiotic stresses, particularly drought, by activating the ABA signaling pathway. This study used a combination of structure-directed design and molecular docking screening methods to synthesize a novel series of opabactin (OP) analogs. Among them, compounds 4a-4d and 5a showed comparable or superior activity to OP in bioassays, including seed germination and seedling growth inhibition in A. thaliana and rice, stomatal closure, and drought resistance in wheat and soybean. Further transcriptome analysis revealed distinct mechanisms of action between compound 4c and iso-PhABA in enhancing drought tolerance in A. thaliana. These findings highlight the application prospect of 4c and its analogs in agricultural cultivation, particularly in drought resistance. Additionally, they provide new insights into the mechanisms by which different ABA receptor agonists enhance drought resistance.
Collapse
Affiliation(s)
- Xianjun Tang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Minghui Chen
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaobin Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xueqin Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing 100193, China
| | | | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Takeuchi J, Asakura H, Ozasa Y, Koide M, Ohnishi T, Todoroki Y. Synthesis and biological activity of photostable and persistent abscisic acid analogs. Org Biomol Chem 2023; 21:9616-9622. [PMID: 38018712 DOI: 10.1039/d3ob01518a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a critical role in various environmental stress responses and has long been expected to be used in agriculture. However, the practical use of ABA has been limited, mainly because of its photoinstability and rapid biodegradation. We previously developed photostable ABA agonists, BP2A and Me 1',4'-trans-diol BP2A, in which the dienoic acid side chain of ABA was replaced with phenylacetic acid. This finding validated our structure-based approach in designing photostable agonists and provided a basis for developing a more potent or long-lasting ABA agonist. In this study, we synthesized novel BP2A analogs in which the cyclohexenone ring was modified to avoid catabolism by the ABA metabolic enzyme, ABA 8'-hydroxylase. All synthesized analogs showed higher photostability than BP2A under sunlight. In an Arabidopsis seed germination assay, (+)-compounds 5 and 6 with a tetralone ring displayed significantly stronger ABA agonist activity than (+)-BP2A. In contrast, in the in vitro phosphatase assays, both compounds showed comparable or weaker ABA receptor (PYL1) agonistic activity than (+)-BP2A, suggesting that the stronger ABA-like activity of (+)-5 and (+)-6 may arise from their metabolic stability in vivo. This study provides data relevant to designing photostable and persistent ABA agonists.
Collapse
Affiliation(s)
- Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Haruka Asakura
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Yuri Ozasa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Motoki Koide
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Toshiyuki Ohnishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Nguyen CH, Yan D, Nambara E. Persistence of Abscisic Acid Analogs in Plants: Chemical Control of Plant Growth and Physiology. Genes (Basel) 2023; 14:genes14051078. [PMID: 37239437 DOI: 10.3390/genes14051078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that regulates numerous plant processes, including plant growth, development, and stress physiology. ABA plays an important role in enhancing plant stress tolerance. This involves the ABA-mediated control of gene expression to increase antioxidant activities for scavenging reactive oxygen species (ROS). ABA is a fragile molecule that is rapidly isomerized by ultraviolet (UV) light and catabolized in plants. This makes it challenging to apply as a plant growth substance. ABA analogs are synthetic derivatives of ABA that alter ABA's functions to modulate plant growth and stress physiology. Modifying functional group(s) in ABA analogs alters the potency, selectivity to receptors, and mode of action (i.e., either agonists or antagonists). Despite current advances in developing ABA analogs with high affinity to ABA receptors, it remains under investigation for its persistence in plants. The persistence of ABA analogs depends on their tolerance to catabolic and xenobiotic enzymes and light. Accumulated studies have demonstrated that the persistence of ABA analogs impacts the potency of its effect in plants. Thus, evaluating the persistence of these chemicals is a possible scheme for a better prediction of their functionality and potency in plants. Moreover, optimizing chemical administration protocols and biochemical characterization is also critical in validating the function of chemicals. Lastly, the development of chemical and genetic controls is required to acquire the stress tolerance of plants for multiple different uses.
Collapse
Affiliation(s)
- Christine H Nguyen
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Dawei Yan
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| |
Collapse
|
5
|
Yan J, Xu X, Liu L, Song S, Kuang H, Xu C, Wu X. Development of a gold-based lateral flow immunoassay for the determination of abscisic acid. NEW J CHEM 2022. [DOI: 10.1039/d2nj03378j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The visual cut-off values of the LFIA strip for abscisic acid in food samples were 5 ng mL−1 as observed by the naked eye.
Collapse
Affiliation(s)
- Jieyu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|