1
|
Budnikov AS, Leonov NE, Klenov MS, Shevchenko MI, Dvinyaninova TY, Krylov IB, Churakov AM, Fedyanin IV, Tartakovsky VA, Terent'ev AO. Ammonium Dinitramide as a Prospective N-NO 2 Synthon: Electrochemical Synthesis of Nitro- NNO-Azoxy Compounds from Nitrosoarenes. Molecules 2024; 29:5563. [PMID: 39683721 DOI: 10.3390/molecules29235563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, the electrochemical coupling of nitrosoarenes with ammonium dinitramide is discovered, leading to the facile construction of the nitro-NNO-azoxy group, which represents an important motif in the design of energetic materials. Compared to known approaches to nitro-NNO-azoxy compounds involving two chemical steps (formation of azoxy group containing a leaving group and its nitration) and demanding expensive, corrosive, and hygroscopic nitronium salts, the presented electrochemical method consists of a single step and is based solely on nitrosoarenes and ammonium dinitramide. The dinitramide salt plays the roles of both the electrolyte and reactant for the coupling. Despite the fact that many side reactions can be expected due to the redox-activity of both the reagents and target products, under optimized conditions the synthesis is performed in an undivided cell under constant current conditions with high current density and can be easily scaled up without a reduction in the product yield. Moreover, the synthesized nitro-NNO-azoxy compounds are discovered to be potent fungicides active against a broad range of phytopathogenic fungi.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Nikita E Leonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Michael S Klenov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Tatiana Y Dvinyaninova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Aleksandr M Churakov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Ivan V Fedyanin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991 Moscow, Russia
| | - Vladimir A Tartakovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|
2
|
Westwood MT, Omar Farah A, Wise HB, Sinfield M, Robichon C, Prindl MI, Cordes DB, Ha-Yeong Cheong P, Smith AD. Isothiourea-Catalysed Acylative Kinetic Resolution of Tertiary Pyrazolone Alcohols. Angew Chem Int Ed Engl 2024; 63:e202407983. [PMID: 39177177 DOI: 10.1002/anie.202407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
The development of methods for the selective acylative kinetic resolution (KR) of tertiary alcohols is a recognised synthetic challenge with relatively few successful substrate classes reported to date. In this manuscript, a highly enantioselective isothiourea-catalysed acylative KR of tertiary pyrazolone alcohols is reported. The scope and limitations of this methodology have been developed, with high selectivity observed across a broad range of substrate derivatives incorporating varying substitution at N(2)-, C(4)- and C(5)-, as well as bicyclic constraints within the pyrazolone scaffold (30 examples, selectivity factors (s) typically >100) at generally low catalyst loadings (1 mol %). The application of this KR method to tertiary alcohols derived directly from a natural product (geraniol), alongside pharmaceutically relevant drug compounds (indomethacin, gemfibrozil and probenecid), with high efficiency (s >100) is also described. The KR process is readily amenable to scale up using bench grade solvents and reagents, with effective resolution on a 50 g (0.22 mol) scale demonstrated. The key structural motif leading to excellent selectivity in this KR process has been probed through computation, with an NC=O⋅⋅⋅isothiouronium interaction from substrate to acylated catalyst observed within the favoured transition state. Similarly, the effect of C(5)-aryl substitution that leads to reduced experimental selectivity is probed, with a competitive π-isothiouronium interaction identified as leading to reduced selectivity.
Collapse
Affiliation(s)
- Matthew T Westwood
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Henry B Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Mike Sinfield
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Camille Robichon
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Martha I Prindl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeong Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
3
|
An L, Yang L, Yan T, Yi M, Liu S, Li H, Bao X. Synthesis and agricultural antimicrobial evaluation of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety. PEST MANAGEMENT SCIENCE 2024; 80:5307-5321. [PMID: 38899477 DOI: 10.1002/ps.8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND To discover more efficient agricultural antimicrobial agents, a series of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety were prepared and assessed for their antibacterial and antifungal activities. RESULTS All the target compounds were characterized by 1H and 13C NMR as well as high-resolution mass spectrometry (HRMS), and the chemical structure of the most potent compound E19 incorporating a 4-trifluoromethoxy substituent was clearly confirmed via single crystal X-ray diffraction measurements. The bioassay results indicated that some compounds possessed notable inhibitory effects in vitro against the bacterium Xanthomonas oryzae pv. oryzicola (Xoc). For example, compound E19 had an EC50 (effective concentration for 50% activity) value of 7.1 μg/mL towards this pathogen, approximately 15- and 10-fold more effective than the commercial bactericides thiodiazole copper and bismerthiazol (EC50 = 110.2 and 72.4 μg/mL, respectively). Subsequently, the mechanistic studies showed that compound E19 likely exerted its antibacterial efficacies by altering the cell morphology, increasing the permeability of bacterial cytoplasmic membrane, suppressing the production of bacterial extracellular polysaccharides and the extracellular enzyme activities (amylase and cellulase), and blocking the swimming motility of Xoc. Moreover, the proteomic analysis revealed that compound E19 could reduce the bacterial flagellar biosynthesis and decrease the flagellar motility by down-regulating the expression of the related differential proteins. CONCLUSION Compound E19 exhibited good potential for further development as a bactericide candidate for control of Xoc. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lian An
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Lan Yang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Taisen Yan
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Mingyan Yi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Songsong Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Hong Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiaoping Bao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
4
|
Budnikov AS, Krylov IB, Shevchenko MI, Segida OO, Lastovko AV, Alekseenko AL, Ilovaisky AI, Nikishin GI, Terent’ev AO. C-O Coupling of Hydrazones with Diacetyliminoxyl Radical Leading to Azo Oxime Ethers-Novel Antifungal Agents. Molecules 2023; 28:7863. [PMID: 38067592 PMCID: PMC10707749 DOI: 10.3390/molecules28237863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Selective oxidative C-O coupling of hydrazones with diacetyliminoxyl is demonstrated, in which diacetyliminoxyl plays a dual role. It is an oxidant (hydrogen atom acceptor) and an O-partner for the oxidative coupling. The reaction is completed within 15-30 min at room temperature, is compatible with a broad scope of hydrazones, provides high yields in most cases, and requires no additives, which makes it robust and practical. The proposed reaction leads to the novel structural family of azo compounds, azo oxime ethers, which were discovered to be highly potent fungicides against a broad spectrum of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, Sclerotinia sclerotiorum).
Collapse
Affiliation(s)
- Alexander S. Budnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
| | - Igor B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Mikhail I. Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
| | - Andrey V. Lastovko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
| | - Anna L. Alekseenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia; (A.S.B.); (M.I.S.); (O.O.S.); (A.I.I.)
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|