1
|
Madzinga M, Malefo MBL, van der Merwe C, De Canha MN, Wadhwani A, Lall N, Kritzinger Q. Exploring indigenous South African plants as alternative treatments for dermatophytosis: Focusing on the antifungal properties and mechanism of action of Searsia lancea. Fitoterapia 2025; 184:106596. [PMID: 40339615 DOI: 10.1016/j.fitote.2025.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Numerous medicinal plants are reported to have activity against dermatophytes, however, there are limited studies providing insights into their mechanism of action, which may be hindering their clinical use. This study aimed to investigate the antifungal activity and toxicity of three South African plants traditionally used to treat skin infections caused by dermatophytes and to investigate the mechanism of action of the most active plant extract. Searsia lancea showed the highest antifungal activity against Microsporum canis (MIC 0.156 mg/mL). Warburgia salutaris and M. comosus showed no toxic effects on HaCaT cells while S. lancea exhibited moderate cytotoxicity. The most active combination of S. lancea combined with M. comosus showed to be non-toxic. Searsia lancea and M. comosus were non-mutagenic at 500 μg/mL. The ethyl acetate partition of S. lancea demonstrated a two-fold increase in activity against Microsporum species while fraction fifteen (F15) exhibited a four-fold increase in activity against T. mentagrophytes. Two compounds in F15 were identified as sakuranetin and gentisic acid, with sakuranetin showing the best activity against T. mentagrophytes. Electron microscopy showed alterations of hyphal surfaces in the form of shrinkage and folding of the plasma membrane (24-48 h) and breakage and leakage of cytoplasmic material (72 h). The RT-qPCR showed significant repression (p < 0.01) of the SSU1 gene of M. canis treated with S. lancea (0.312 mg/mL) after 2 and 7 days. The findings not only support traditional usage of S. lancea but also provide targets of S. lancea's anti-dermatophytic activity.
Collapse
Affiliation(s)
- Murunwa Madzinga
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, 0028, South Africa.
| | | | - Chris van der Merwe
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, 0028, South Africa
| | - Marco Nuno De Canha
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, 0028, South Africa.
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, India; Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Vacoas 73304, Mauritius.
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, 0028, South Africa.
| | - Quenton Kritzinger
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, 0028, South Africa.
| |
Collapse
|
2
|
Yang K, Xu W, Cai H, Tang X, An X, He C, Teng H, Xu Q, Xu Y. Identification of a COMT Gene Involved in the Biosynthesis of Melatonin Which Mediates Resistance to Citrus Canker. J Pineal Res 2025; 77:e70043. [PMID: 40172092 DOI: 10.1111/jpi.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Citrus canker, caused by Xanthomonas citri subsp citri (Xcc), represents a severe threat to the citrus industry. The conventional control measures for citrus canker primarily rely on chemical bactericide. However, overuse of bactericide will cause environmental and food security concerns. To address this problem, efforts are being made to develop environmentally friendly bio-bactericide alternatives. In this study, we identified a caffeic acid O-methyltransferase gene, AbCOMT1, from Atalantia buxifolia, a Citrus-related species exhibiting high resistance to citrus canker. AbCOMT1 encodes a key enzyme involved in melatonin biosynthesis, and its overexpression in sweet orange significantly enhances resistance to citrus canker. We found elevated melatonin levels in the AbCOMT1 overexpressing sweet orange lines and demonstrated that the AbCOMT1 overexpression not only directly inhibited Xcc proliferation but also activated citrus immune responses. To further improve the inhibitory efficacy of melatonin, we tested several melatonin derivatives, achieving a tenfold increase in inhibitory activity. Notably, the melatonin derivative MT-3 exhibited outstanding efficacy in controlling citrus canker under field conditions. Our results revealed AbCOMT1 as a promising resistance gene and identified the highly efficient melatonin derivatives for citrus canker disease control.
Collapse
Affiliation(s)
- Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wenqing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Huanyu Cai
- College of Chemistry, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Tang
- Anhui Engineering Laboratory for Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoyan An
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chunyang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Yang X, Jiang S, Jin Z, Li T. Application of Asymmetric Catalysis in Chiral Pesticide Active Molecule Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17153-17165. [PMID: 39051451 DOI: 10.1021/acs.jafc.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The different configurations of chiral pesticides generally have significant influence on their biological activities. Chiral agrochemicals with high optical purities have become a prominent topic in the research field of new pesticides due to their advantages including lower toxicity, higher efficiency, and reduced residue levels. However, most commercially available pesticides that possess chiral elements are still used in their racemic forms. To date, asymmetric catalysis has emerged as a versatile tool for the enantioselective synthesis of various chiral agrochemicals and novel chiral pesticide active molecules. This perspective provides a comprehensive overview of the applications of diverse asymmetric catalytic approaches in the facile preparation of numerous novel pesticide active molecules, and our own outlook on the future development of this highly active research direction is also presented at the end of this review.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Liu X, Zhang Y, Zou Y, Yan C, Chen J. Recent Advances and Outlook of Benzopyran Derivatives in the Discovery of Agricultural Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12300-12318. [PMID: 38800848 DOI: 10.1021/acs.jafc.3c09244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Scaffold structures, new mechanisms of action, and targets present enormous challenges in the discovery of novel pesticides. The discovery of new scaffolds is the basis for the continuous development of modern agrochemicals. Identification of a good scaffold such as triazole, carbamate, methoxy acrylate, pyrazolamide, pyrido-pyrimidinone mesoionic, and bisamide often leads to the development of a new series of pesticides. In addition, pesticides with the same target, including the inhibitors of succinate dehydrogenase (SDH), oxysterol-binding-protein, and p-hydroxyphenyl pyruvate dioxygenase (HPPD), may have the same or similar scaffold structure. Recent years have witnessed significant progress in the discovery of new pesticides using natural products as scaffolds or bridges. In recent years, there have been increasing reports on the application of natural benzopyran compounds in the discovery of new pesticides, especially osthole and coumarin. A systematic and comprehensive review of benzopyran active compounds in the discovery of new agricultural chemicals is helpful to promote the discussion and development of benzopyran active compounds. Therefore, this work systematically reviewed the research and application of benzopyran derivatives in the discovery of agricultural chemicals, summarized the antiviral, herbicidal, antibacterial, fungicidal, insecticidal, nematicidal and acaricidal activities of benzopyran active compounds, and discussed the structural-activity relationship and mechanism of action. In addition, some active fragments were recommended to further optimize the chemical structure of benzopyran active compounds based on reference information.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongchong Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
He X, Sun S, Kong W, Li M, Li S. Eudistomins Y-Inspired Design and Divergent Optimization of Heteroaryl Ketones for New Antifungal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11928-11937. [PMID: 38753466 DOI: 10.1021/acs.jafc.3c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The discovery of structurally distinct leads is imperative in modern agrochemical science. Inspired by eudistomins Y and the framework-related pharmaceuticals, aryl heteroaryl ketone was drawn as a common model intriguing the design and divergent synthesis of 14 kinds of heteroaryl ketones aligned with their oxime derivatives. Antifungal function-oriented phenotypical screen protruded benzothiazolyl-phenyl oxime 5a as a promising model, and the concomitant modification led to benzothiazolyl oxime 5am (EC50 = 5.17 μM) as a superior lead than fluoxastrobin (EC50 = 7.54 μM) against Sclerotinia sclerotiorum. Scaffold hopping of the phenyl subunit identified benzothiazolyl-pyridyl oxime as a novel antifungal scaffold accompanied by acquiring oxime 5bm with remarkable activity (EC50 = 3.57 μM) against Pyricularia oryzae. Molecular docking showed that candidate 5am could form more hydrogen bonds with the amino acid residues of actin than metrafenone. This compound also demonstrated better curative efficacy than that of fluoxastrobin and metrafenone in controlling the plant disease caused by S. sclerotiorum. These results rationalize the discovery of antifungal candidates based on aryl heteroaryl ketone.
Collapse
Affiliation(s)
- Xiaodan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wenlong Kong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mengyang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Wu T, Yu L, Xiao L, Wang T, Li P, Mu B. Novel 4-Chromanone-Derived Compounds as Plant Immunity Inducers against CMV Disease in Passiflora spp. (Passion Fruit). Molecules 2024; 29:1045. [PMID: 38474557 DOI: 10.3390/molecules29051045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
This study involved the design and synthesis of a series of novel 4-chromanone-derived compounds. Their in vivo anti-cucumber mosaic virus (CMV) activity in field trials against CMV disease in Passiflora spp. was then assessed. Bioassay results demonstrated that compounds 7c and 7g exhibited remarkable curative effects and protection against CMV, with inhibition rates of 57.69% and 51.73% and 56.13% and 52.39%, respectively, surpassing those of dufulin and comparable to ningnanmycin. Field trials results indicated that compound 7c displayed significant efficacy against CMV disease in Passiflora spp. (passion fruit) after the third spraying at a concentration of 200 mg/L, with a relative control efficiency of 47.49%, surpassing that of dufulin and comparable to ningnanmycin. Meanwhile, nutritional quality test results revealed that compound 7c effectively enhanced the disease resistance of Passiflora spp., as evidenced by significant increases in soluble protein, soluble sugar, total phenol, and chlorophyll contents in Passiflora spp. leaves as well as improved the flavor and taste of Passiflora spp. fruits, as demonstrated by notable increases in soluble protein, soluble sugar, soluble solid, and vitamin C contents in Passiflora spp. fruits. Additionally, a transcriptome analysis revealed that compound 7c primarily targeted the abscisic acid (ABA) signaling pathway, a crucial plant hormone signal transduction pathway, thereby augmenting resistance against CMV disease in Passiflora spp. Therefore, this study demonstrates the potential application of these novel 4-chromanone-derived compounds as effective inducers of plant immunity for controlling CMV disease in Passiflora spp. in the coming decades.
Collapse
Affiliation(s)
- Tianli Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lingling Xiao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Light Industry Technical College, Guiyang 550032, China
| | - Tao Wang
- Guizhou Light Industry Technical College, Guiyang 550032, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556011, China
| | - Bo Mu
- Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| |
Collapse
|
7
|
Ma YM, Miao X, Jia B, Sun ZY, Ma SY, Yan C. Design, Synthesis, Antifungal Evaluation, Structure-Activity Relationship (SAR) Study, and Molecular Docking of Novel Spirotryprostatin A Derivatives. Molecules 2024; 29:864. [PMID: 38398616 PMCID: PMC11154411 DOI: 10.3390/molecules29040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Phytopathogenic fungi cause plant diseases and economic losses in agriculture. To efficiently control plant pathogen infections, a total of 19 spirotryprostatin A derivatives and 26 spirooxindole derivatives were designed, synthesized, and tested for their antifungal activity against ten plant pathogens. Additionally, the intermediates of spirooxindole derivatives were investigated, including proposing a mechanism for diastereoselectivity and performing amplification experiments. The bioassay results demonstrated that spirotryprostatin A derivatives possess good and broad-spectrum antifungal activities. Compound 4d exhibited excellent antifungal activity in vitro, equal to or higher than the positive control ketoconazole, against Helminthosporium maydis, Trichothecium roseum, Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium graminearum, Alternaria brassicae, Alternaria alternate, and Fusarium solan (MICs: 8-32 µg/mL). Compound 4k also displayed remarkable antifungal activity against eight other phytopathogenic fungi, including Fusarium oxysporium f. sp. niveum and Mycosphaerella melonis (MICs: 8-32 µg/mL). The preliminary structure-activity relationships (SARs) were further discussed. Moreover, molecular docking studies revealed that spirotryprostatin A derivatives anchored in the binding site of succinate dehydrogenase (SDH). Therefore, these compounds showed potential as natural compound-based chiral fungicides and hold promise as candidates for further enhancements in terms of structure and properties.
Collapse
Affiliation(s)
- Yang-Min Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (X.M.); (B.J.); (Z.-Y.S.); (S.-Y.M.); (C.Y.)
| | | | | | | | | | | |
Collapse
|
8
|
Kong W, Li N, Lai J, Sun S, Li S. Antifungal Function Oriented Scaffold Hopping for the Discovery of Oxazolyl-oxazoline as a Novel Model against Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18260-18269. [PMID: 37756692 DOI: 10.1021/acs.jafc.3c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Discovery of novel structural models is extremely important in agrochemical innovation. Scaffold hopping was conducted, and 16 kinds of novel models were synthesized and biologically evaluated. Oxazolyl-oxazoline 25 showed a promising in vitro potential against Fusarium graminearum with EC50 value of 18.25 μM, which was 2.4 times more potent than that of carbendazim (EC50 = 43.06 μM). The antifungal structure-activity relationship (SAR) revealed that compound 25am had the most promising antifungal activity against F. graminearum, with an EC50 value of 13.46 μM, which was 3.2 more potent than that of carbendazim. Different from carbendazim, the candidate 25am could form five hydrogen bonds with the amino acid residues in β-tubulin in the molecular docking and could effectively inhibit the carbendazim-resistant F. graminearum strain. Scanning electron microscopy (SEM) revealed that compound 25am induced the mycelia of F. graminearum slight collapse. This work suggests that compound 25am should be prioritized for further evaluation for new antifungal agents.
Collapse
Affiliation(s)
- Wenlong Kong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Nannan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixing Lai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Wang R, Fu Y, Ma R, Jin H, Zhao W. Total Synthesis of Lineaflavones A, C, D, and Analogues. Molecules 2023; 28:molecules28052373. [PMID: 36903616 PMCID: PMC10005778 DOI: 10.3390/molecules28052373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The first total synthesis of lineaflavones A, C, D, and their analogues has been accomplished. The key synthetic steps include aldol/oxa-Michael/dehydration sequence reactions to assemble the tricyclic core, Claisen rearrangement and Schenck ene reaction to construct the key intermediate, and selective substitution or elimination of tertiary allylic alcohol to obtain natural compounds. In addition, we also explored five new routes to synthesize fifty-three natural product analogues, which can contribute to a systematic structure-activity relationship during biological evaluation.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yu Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ran Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (W.Z.)
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (W.Z.)
| |
Collapse
|
10
|
Pereira AM, Cidade H, Tiritan ME. Stereoselective Synthesis of Flavonoids: A Brief Overview. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010426. [PMID: 36615614 PMCID: PMC9823814 DOI: 10.3390/molecules28010426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Stereoselective synthesis has been emerging as a resourceful tool because it enables the obtaining of compounds with biological interest and high enantiomeric purity. Flavonoids are natural products with several biological activities. Owing to their biological potential and aiming to achieve enantiomerically pure forms, several methodologies of stereoselective synthesis have been implemented. Those approaches encompass stereoselective chalcone epoxidation, Sharpless asymmetric dihydroxylation, Mitsunobu reaction, and the cycloaddition of 1,4-benzoquinone. Chiral auxiliaries, organo-, organometallic, and biocatalysis, as well as the chiral pool approach were also employed with the goal of obtaining chiral bioactive flavonoids with a high enantiomeric ratio. Additionally, the employment of the Diels-Alder reaction based on the stereodivergent reaction on a racemic mixture strategy or using catalyst complexes to synthesise pure enantiomers of flavonoids was reported. Furthermore, biomimetic pathways displayed another approach as illustrated by the asymmetric coupling of 2-hydroxychalcones driven by visible light. Recently, an asymmetric transfer hydrogen-dynamic kinetic resolution was also applied to synthesise (R,R)-cis-alcohols which, in turn, would be used as building blocks for the stereoselective synthesis of flavonoids.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
- Correspondence:
| |
Collapse
|
11
|
Li R, Bi R, Cai H, Zhao J, Sun P, Xu W, Zhou Y, Yang W, Zheng L, Chen XL, Wang G, Wang D, Liu J, Teng H, Li G. Melatonin functions as a broad-spectrum antifungal by targeting a conserved pathogen protein kinase. J Pineal Res 2023; 74:e12839. [PMID: 36314656 DOI: 10.1111/jpi.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Melatonin is a low-cost natural small indole molecule with versatile biological functions. However, melatonin's fungicidal potential has not been fully exploited, and the mechanism remains elusive. Here, we report that melatonin broadly inhibited 13 plant pathogens. In the rice blast fungal pathogen Magnaporthe oryzae, melatonin inhibited fungal growth, formation of infection-specific structures named appressoria, and plant infection, reducing disease severity. Melatonin entered fungal cells efficiently and colocalized with the critical mitogen-activated protein kinase named Mps1, suppressing phosphorylation of Mps1. Melatonin's affinity for Mps1 via two hydrogen bonds was demonstrated using surface plasmon resonance and chemical modifications. To improve melatonin's efficiency, we obtained 20 melatonin derivatives. Tert-butyloxycarbonyl melatonin showed a 25-fold increase in fungicidal activities, demonstrating the feasibility of chemical modifications in melatonin modification. Our study demonstrated the broad-spectrum fungicidal effect of melatonin by suppressing Mps1 as one of the targets. Through further systematic modifications, developing an eco-friendly melatonin derivative of commercial values for agricultural applications appears promising.
Collapse
Affiliation(s)
- Renjian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruiqing Bi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Huanyu Cai
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Juan Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilong Xu
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongli Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Xu X, Guo L, Liu Y, He X, Guo Y, Zeng Y. Silver‐Catalyzed Regioselective Alkylation of Chromones with Carboxylic Acids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao‐Feng Xu
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Lu Guo
- Department of Sports Medicine Affiliated Nanhua Hospital Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Yuan‐Xin Liu
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Xing‐Zi He
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Yu Guo
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| | - Yao‐Fu Zeng
- School of Pharmaceutical Science Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Hengyang Medical School University of South China Hengyang Hunan 421001 China
| |
Collapse
|
13
|
Gao W, Zhang Y, Chen L, Liu X, Li K, Han L, Yu Z, Ren J, Tang L, Fan Z. Novel [1,2,4]-Triazolo[3,4- b]-[1,3,4]thiadizoles as Potent Pyruvate Kinase Inhibitors for Fungal Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10170-10181. [PMID: 35960265 DOI: 10.1021/acs.jafc.2c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To discover novel target-based fungicidal candidates, a molecular design model was established with a three-dimensional (3D) structure of Rhizoctonia solani pyruvate kinase (RsPK) simulated with the AlphaFold 2 and YZK-C22 as a fungicidal lead. A series of novel [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives were rationally designed, synthesized, evaluated for their fungicidal performance, and validated for their mode of action. The in vitro bioassays with R. solani indicated that compounds 5g, 5o, and 5z with an EC50 value ranging from 1.01 to 1.54 μg/mL displayed higher fungicidal activity than the positive control YZK-C22 with its EC50 of 3.14 μg/mL. Especially, 5o exhibited high potency and a broad spectrum against Alternaria solani, Botrytis cinerea, Cercospora arachidicola, Physalospora piricola, R. solani, and Sclerotinia sclerotiorum with its EC50 value falling between 1.54 and 13.10 μg/mL. Like all positive controls, 5g, 5o, and 5z showed excellent in vivo growth inhibition against Pseudoperonospora cubensis at 200 μg/mL. Even though the PK enzymatic inhibition assay showed that 5o was approximately 2.6 times less active than YZK-C22 (IC50: 29.14 vs 11.15 μg/mL, respectively), the similar fluorescence quenching patterns of RsPK by 5o and YZK-C22, and the docking results of interactions between RsPK and 5o or YZK-C22 implied that they might share the similar binding site in the RsPK active pocket. Our studies suggested that 5o could be used as a potent fungicidal lead for further optimization. The results of comparative molecular field analysis (CoMFA) provided a direction for further molecular design.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhenwu Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Lai JR, Yin FD, Guo QS, Yuan F, Nian BF, Zhang M, Wu ZB, Zhang HB, Tang E. Silver-catalysed three-component reactions of alkynyl aryl ketones, element selenium, and boronic acids leading to 3-organoselenylchromones. Org Biomol Chem 2022; 20:5104-5114. [PMID: 35703142 DOI: 10.1039/d2ob00696k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ag-catalysed three-component reaction of alkynyl aryl ketones bearing an ortho-methoxy group, element selenium, and arylboronic acid, providing a facile route to selenofunctionalized chromone products has been developed. This protocol features high efficiency and high regioselectivity, and the use of selenium powder as the selenium source. Mechanistic experiments indicated that the combined oxidative effect of (bis(trifluoroacetoxy)iodo)benzene and oxygen in the air pushes the catalytic redox cycle of the Ag catalyst and the phenylselenium trifluoroacetate formed in situ is the key intermediate of the PIFA-mediated 6-endo-electrophilic cyclization and selenofunctionalization reaction of alkynyl aryl ketones.
Collapse
Affiliation(s)
- Jin-Rong Lai
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fu-Dan Yin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qing-Song Guo
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fei Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Bei-Fang Nian
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Ming Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhi-Bang Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - E Tang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|