1
|
Huong NT, Hop NQ, Duy DA, Son NT. The genus Gnetum: Traditional use, phytochemistry, nutritional value, biosynthesis, synthesis, pharmacology, toxicology, synthetic advance, and pharmacokinetics. Fitoterapia 2025; 182:106461. [PMID: 40024550 DOI: 10.1016/j.fitote.2025.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Gnetum is the sole genus within the family Gnetaceae. Numerous species are edible, their seeds can be roasted, and the leaves can be consumed as vegetables. Gnetum plants have been highly esteemed in traditional folk medicine worldwide for many years. An extensive review highlighting the significant value of this genus is currently unavailable. OBJECTIVE This study aims to systematically present the state of the art in phytochemistry, food chemistry, biosynthesis, synthesis, pharmacology, toxicology, synthetic advance, and pharmacokinetics. METHOD The relevant references were collected from various electronic sources, including Google Scholar, Web of Science, and reputable journals. "Gnetum" was the primary keyword used to search for publications. Data collection was conducted from 1978 to now, and more than 150 articles have been reviewed. RESULTS Among the 261 identified phytochemicals, 180 compounds were elucidated as stilbenoids. Gnetum metabolites also contained other classes, such as lignans, flavonoids, monophenols, alkaloids, and fatty acids. The major compound, isorhapontigenin, is considered the most important agent in the genus Gnetum. It is also noted that Gnetum plants are rich in nutritional content, including fibers, carbohydrates, vitamins, essential amino acids, and minerals. Gnetum plant extracts are safe, with low toxicity levels. In general, oxidative reactions among radicals are responsible for the biosynthesis of Gnetum stilbenoids, whereas glucuronidation of hydroxyl groups is the main pharmacokinetic action. Pharmacological activities of Gnetum constituents have been reported to include anticancer, antioxidative, anti-inflammatory, antimicrobial, antidiabetic, antihyperuricemic, anti-obesity, antimalarial, antiviral, antiplatelet, estrogenic, and protective actions for various organs. Various in vitro and in vivo pharmacological assays have successfully explained these activities through molecular mechanisms, such as the MAPK (mitogen-activated protein kinase) or NF-κB (nuclear factor-kappa B) signaling pathways. CONCLUSION Further pharmacological assessments are warranted, particularly focusing on minor and newly discovered compounds. Enhancements in bioavailability and the development of novel synthetic agents derived from Gnetum are anticipated.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, 298 Cau Dien, North Tu Liem, Hanoi, Viet Nam
| | - Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), 32 Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Viet Nam
| | - Duong Anh Duy
- The Village School, A Nord Anglia Education School, 13051 Whittington Drive, Houston, Texas 77077, United States
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
2
|
Meng T, Wen Z, Cheng X, Li C, Zhang P, Xiao D, Xu Y. Unlocking Gut Health: The Potent Role of Stilbenoids in Intestinal Homeostasis. Animals (Basel) 2025; 15:417. [PMID: 39943187 PMCID: PMC11816141 DOI: 10.3390/ani15030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Stilbenoids are a class of naturally occurring phenolic compounds found in various plant species, characterized by a stilbene backbone with diverse substituents that confer a range of biological activities. These compounds exhibit antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for improving intestinal health. The intestinal tract plays a critical role in nutrient digestion, absorption, and immune defense, and maintaining its integrity is vital for animal growth. Stilbenoids contribute to gut health by enhancing intestinal morphology, supporting mucosal immune responses, regulating gut microbiota composition, modulating metabolic pathways, and maintaining mitochondrial health. This review provides a comprehensive analysis of key stilbenoids, including resveratrol, pterostilbene, piceatannol, and oxyresveratrol, focusing on their biological effects and regulatory mechanisms. By highlighting their roles in mitigating intestinal inflammation and promoting gut function, this review provides a basis for the practical application of stilbenoids in animal health and husbandry.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Ziwei Wen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Dingfu Xiao
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| |
Collapse
|
3
|
Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients 2025; 17:275. [PMID: 39861406 PMCID: PMC11767469 DOI: 10.3390/nu17020275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers. Polyphenols such as flavonoids, phenolic acids, stilbenes, tannins, and lignans constitute an extensive and heterogeneous group of phytochemicals in fresh fruits, vegetables and their products. Various in vitro studies, animal model studies and available clinical trials revealed that flavonoids (e.g., quercetin, kaempferol, rutin, epicatechin, genistein, daidzein, anthocyanins), phenolic acids (e.g., chlorogenic, caffeic, ellagic, gallic acids, curcumin), stilbenes (e.g., resveratrol), tannins (e.g., procyanidin B2, seaweed phlorotannins), lignans (e.g., pinoresinol) have the ability to lower hyperglycemia, enhance insulin sensitivity and improve insulin secretion, scavenge reactive oxygen species, reduce chronic inflammation, modulate gut microbiota, and alleviate secondary complications of T2DM. The interaction between polyphenols and conventional antidiabetic drugs offers a promising strategy in the management and treatment of T2DM, especially in advanced disease stages. Synergistic effects of polyphenols with antidiabetic drugs have been documented, but also antagonistic interactions that may impair drug efficacy. Therefore, additional research is required to clarify mutual interactions in order to use the knowledge in clinical applications. Nevertheless, dietary polyphenols can be successfully applied as part of supportive treatment for T2DM, as they reduce both obvious clinical symptoms and secondary complications.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| |
Collapse
|
4
|
Zhao L, Duan Y, Li Z, Li J, Li S. Unearthing the Potential Therapeutic Effects of Oxyresveratrol Based on Intrinsic Links between Pharmacological Effects: Implications for the Gut-Liver-Brain Axis. Pharmaceuticals (Basel) 2024; 17:1063. [PMID: 39204169 PMCID: PMC11359039 DOI: 10.3390/ph17081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Oxyresveratrol is a stilbene compound with a simple chemical structure and various therapeutic potentials. This study summarized and analyzed the multiple pharmacological effects and mechanisms of oxyresveratrol, identifying its prominent performance in neuroprotection, hepatoprotection, and anti-inflammatory activities in the intestines. By integrating the pharmacological effects of oxyresveratrol with insights from the network pharmacology and molecular docking of its interactions with targets linked to gut-liver-brain axis disorders, it has been shown that oxyresveratrol may hold promise for the treatment of gut-liver-brain axis-related disorders. The synergistic effect between various mechanisms has inspired further research and the development of oxyresveratrol's application value.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Zhaoxing Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| |
Collapse
|
5
|
Brezani V, Blondeau N, Kotouček J, Klásková E, Šmejkal K, Hošek J, Mašková E, Kulich P, Prachyawarakorn V, Heurteaux C, Mašek J. Enhancing Solubility and Bioefficacy of Stilbenes by Liposomal Encapsulation-The Case of Macasiamenene F. ACS OMEGA 2024; 9:9027-9039. [PMID: 38434860 PMCID: PMC10905713 DOI: 10.1021/acsomega.3c07380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Stilbenes in food and medicinal plants have been described as potent antiphlogistic and antioxidant compounds, and therefore, they present an interesting potential for the development of dietary supplements. Among them, macasiamenene F (MF) has recently been shown to be an effective anti-inflammatory and cytoprotective agent that dampens peripheral and CNS inflammation in vitro. Nevertheless, this promising molecule, like other stilbenes and a large percentage of drugs under development, faces poor water solubility, which results in trickier in vivo administration and low bioavailability. With the aim of improving MF solubility and developing a form optimized for in vivo administration, eight types of conventional liposomal nanocarriers and one type of PEGylated liposomes were formulated and characterized. In order to select the appropriate form of MF encapsulation, the safety of MF liposomal formulations was evaluated on THP-1 and THP-1-XBlue-MD2-CD14 monocytes, BV-2 microglia, and primary cortical neurons in culture. Furthermore, the cellular uptake of liposomes and the effect of encapsulation on MF anti-inflammatory effectiveness were evaluated on THP-1-XBlue-MD2-CD14 monocytes and BV-2 microglia. MF (5 mol %) encapsulated in PEGylated liposomes with an average size of 160 nm and polydispersity index of 0.122 was stable, safe, and the most promising form of MF encapsulation keeping its cytoprotective and anti-inflammatory properties.
Collapse
Affiliation(s)
- Veronika Brezani
- Department
of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00 Brno, Czech Republic
- Department
of Pharmacology and Toxicology, Veterinary
Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
- IPMC,
UMR 7275, Université Côte
d’Azur, CNRS, 660 Route des Lucioles, Sophia Antipolis, F-06560 Valbonne, France
| | - Nicolas Blondeau
- IPMC,
UMR 7275, Université Côte
d’Azur, CNRS, 660 Route des Lucioles, Sophia Antipolis, F-06560 Valbonne, France
| | - Jan Kotouček
- Department
of Pharmacology and Toxicology, Veterinary
Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
| | - Eva Klásková
- Department
of Pharmacology and Toxicology, Veterinary
Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
- Department
of Pharmacology, Faculty of Medicine, Masaryk
University, Kamenice
753/5, CZ-625 00 Brno, Czech Republic
| | - Karel Šmejkal
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého
tř. 1946/1, CZ-612 00 Brno, Czech Republic
| | - Jan Hošek
- Department
of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00 Brno, Czech Republic
- Department
of Pharmacology and Toxicology, Veterinary
Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
| | - Eliška Mašková
- Department
of Pharmacology and Toxicology, Veterinary
Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
| | - Pavel Kulich
- Department
of Pharmacology and Toxicology, Veterinary
Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
| | | | - Catherine Heurteaux
- IPMC,
UMR 7275, Université Côte
d’Azur, CNRS, 660 Route des Lucioles, Sophia Antipolis, F-06560 Valbonne, France
| | - Josef Mašek
- Department
of Pharmacology and Toxicology, Veterinary
Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic
| |
Collapse
|
6
|
Yokoyama T, Kusaka K. Characterization of the molecular interactions between resveratrol derivatives and death-associated protein kinase 1. FEBS J 2023; 290:4465-4479. [PMID: 37171222 DOI: 10.1111/febs.16817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-regulated serine/threonine kinase, regulates cell apoptosis and autophagy and has been implicated in the pathogenesis of Alzheimer's disease (AD). Targeting DAPK1 may be a promising approach for treating AD. In our previous study, we found that a natural polyphenol, resveratrol (1), is a moderate DAPK1 inhibitor. In the present study, we investigated the interactions between natural and synthetic derivatives of 1 and DAPK1. Binding assays including intrinsic fluorescence quenching, protein thermal shift and isothermal titration calorimetry indicated that oxyresveratrol (3), a hydroxylated derivative, and pinostilbene (5), a methoxylated derivative, bind to DAPK1 with comparable affinity to 1. The enzymatic assay showed that 3 more effectively inhibits the intrinsic ATPase activity of DAPK1 compared with 1. Crystallographic analysis revealed that the binding modes of the methoxylated derivatives were different from those of 1 and 3, resulting in a unique interaction. Our results suggest that 3 may be helpful in treating AD and provide a clue for the development of promising DAPK1 inhibitors.
Collapse
Affiliation(s)
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Japan
| |
Collapse
|
7
|
Gallardo-Fernández M, Hornedo-Ortega R, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol and dopamine metabolites: Anti-aggregative effect and neuroprotective activity against α-synuclein-induced toxicity. Food Chem Toxicol 2022; 171:113542. [DOI: 10.1016/j.fct.2022.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
|