1
|
Paredes-Toledo J, Herrera J, Morales J, Robert P, Gómez-Estaca J, Giménez B. Pickering Double Emulsions Stabilized with Chitin Nanocrystals and Myristic Acid-Functionalized Silica Nanoparticles for Curcumin and Chlorogenic Acid Co-Delivery. Pharmaceutics 2025; 17:521. [PMID: 40284516 PMCID: PMC12030632 DOI: 10.3390/pharmaceutics17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Double emulsions (DEs) enable the simultaneous encapsulation of water-soluble and oil-soluble bioactive compounds. Their stability can be enhanced through Pickering stabilization, where solid particles are irreversibly anchored at the interfaces, forming a steric barrier. This study aimed to evaluate the release behavior of curcumin and chlorogenic acid (CA) in Pickering DEs formulated with chitin nanocrystals (ChNCs) stabilizing the outer interface (DE-ChNC) and both ChNCs and myristic acid-functionalized silica nanoparticles (SNPs-C14) stabilizing the outer and inner interfaces (DE-ChNC-C14) under in vitro gastrointestinal digestion. Methods: The optimal homogenization parameters (time and speed) for stabilizing the external interface with ChNCs were determined using a statistical design. Pickering DEs were characterized (droplet size and size distribution, microstructure, creaming, encapsulation efficiency and stability, rheological behavior) and subjected to the INFOGEST digestion method. Results: ChNCs effectively maintained the droplet size, microstructure, and ζ-potential, preventing coalescence and creaming while enhancing viscosity and gel-like behavior, contributing to improved physical stability. The CA encapsulation efficiency was higher in DE-ChNC-C14 (91.4%) than in DE-ChNC (45.0%) due to the presence of SNPs-C14 at the inner interface, which improved CA retention during storage. CA was gradually released from DE-ChNC-C14 throughout digestion, with bioaccessibility similar to that of the control DE (stabilized with conventional emulsifiers; ~60%). Curcumin bioaccessibility in the Pickering DEs was relatively high (~40%) but lower than in the control DE, as the ChNCs reduced lipid digestion and curcumin bioaccessibility. Conclusions: ChNCs and SNPs-C14 effectively stabilized the outer and inner interfaces of DEs, enabling the simultaneous release of water-soluble and oil-soluble bioactives with health benefits.
Collapse
Affiliation(s)
- Javier Paredes-Toledo
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, Santiago 9170124, Chile; (J.P.-T.); (J.H.)
| | - Javier Herrera
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, Santiago 9170124, Chile; (J.P.-T.); (J.H.)
| | - Javier Morales
- Department of Pharmaceutic Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile;
| | - Paz Robert
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile;
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain;
| | - Begoña Giménez
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, Santiago 9170124, Chile; (J.P.-T.); (J.H.)
| |
Collapse
|
2
|
Chen M, Nie C, Wang W, Jiang Z, Xiao J. Interfacial Dynamics and Environmental Responsiveness of Double Emulsions Stabilized by Zein Particles and Surfactant Using Microfluidic Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4989-4999. [PMID: 39688262 DOI: 10.1021/acs.langmuir.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Elucidating the stability dynamics of double emulsions is essential for advancing their sustainable applications in the food industry. This study utilizes microfluidic techniques to investigate the interactions between interfacial components, Tween 80 (Tw80) and zein particles (ZPs), in double emulsions. Our results indicate that the type and concentration of stabilizing agents are critical to emulsion stability with environmental factors further influencing this balance. Specifically, emulsions stabilized by Tw80 primarily exhibited instability through the expulsion of internal droplets (Pe). In contrast, emulsions with ZP concentrations below 0.5% experienced instability due to the coalescence of oil droplets (Po), while those with ZPs concentrations above 0.5% showed instability through Pe, attributed to decreased interfacial relaxation and elasticity. Environmental factors, such as pH, NaCl, and alginate, significantly modulated this stability. Interfacial rheological analyses demonstrated a strong correlation between the emulsion stability and the viscoelastic properties of interfacial films. Lissajous plots revealed that alginate enhanced the elasticity of interface films formed by Tw80 and ZPs, thereby improving the emulsion stability. Additionally, environmental modifications, such as NaCl introduction or pH adjustments, weakened the Tw80 interface strength but accelerated ZP adsorption, ultimately increasing deformation resistance and reducing Pe. This study underscores the potential of microfluidic technologies in advancing colloid and interface science, providing a foundation for the innovative design and precise manipulation of double emulsions.
Collapse
Affiliation(s)
- Meimiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chenhuan Nie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbo Wang
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou 510642, China
| | - Zhuo Jiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Paredes-Toledo J, Herrera J, Morales J, Robert P, Oyarzun-Ampuero F, Giménez B. Bioaccessibility of chlorogenic acid and curcumin co-encapsulated in double emulsions with the inner interface stabilized by functionalized silica nanoparticles. Food Chem 2024; 445:138828. [PMID: 38401311 DOI: 10.1016/j.foodchem.2024.138828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The aim of this study was to evaluate the bioaccessibility of chlorogenic acid (CA) and curcumin co-encapsulated in Pickering double emulsions (DEs) with the inner interface stabilized by hydrophobically modified silica nanoparticles with myristic acid (SNPs-C14) or tocopherol succinate (SNPs-TS). Both SNPs-C14 and SNPs-TS showed contact angles > 90°. Pickering W1/O emulsions were formulated with 4 % of both types of SNPs. Pickering DEs showed higher creaming stability (5-7 %, day 42) and higher CA encapsulation efficiency (EE; 80 %) than control DE. The EE of curcumin was > 98 % in all the DEs. CA was steadily released from Pickering DEs during digestion, achieving bioaccessibility values of 58-60 %. Curcumin was released during the intestinal phase (∼80 % bioaccessibility in all DEs). Co-loaded DEs showed similar bioaccessibility for CA and curcumin than single-loaded. SNPs-C14 and SNPs-TS were suitable to stabilize the W1:O interface of DEs as co-delivery systems of bioactive compounds with health-promoting properties.
Collapse
Affiliation(s)
- Javier Paredes-Toledo
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, 9170124 Santiago, Chile.
| | - Javier Herrera
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, 9170124 Santiago, Chile.
| | - Javier Morales
- Department of Pharmaceutic Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile.
| | - Paz Robert
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile.
| | - Felipe Oyarzun-Ampuero
- Department of Pharmaceutic Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile.
| | - Begoña Giménez
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, 9170124 Santiago, Chile.
| |
Collapse
|
4
|
Liu L, Wang W, Duan S, Liu J, Mo J, Cao Y, Xiao J. Novel Pickering bigels stabilized by whey protein microgels: Interfacial properties, oral sensation and gastrointestinal digestive profiles. Food Res Int 2024; 188:114352. [PMID: 38823826 DOI: 10.1016/j.foodres.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024]
Abstract
In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.
Collapse
Affiliation(s)
- Lang Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenbo Wang
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Shenglin Duan
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People's Republic of China
| | - Jia Liu
- Beijing key laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, People's Republic of China
| | - Jiamei Mo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Yang M, Zhang J, Yan H, Pan Y, Zhou J, Zhong H, Wang J, Cai H, Feng F, Zhao M. A comprehensive review of medium chain monoglycerides on metabolic pathways, nutritional and functional properties, nanotechnology formulations and applications in food system. Crit Rev Food Sci Nutr 2024; 65:2943-2964. [PMID: 38779723 DOI: 10.1080/10408398.2024.2353403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd, Shaoguan, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Liu X, Song Z, Tian W, Abdullah, Huang Q, Chen M, Huang Y, Xiao H, Xiao J. Advancements in lipid-based delivery systems for functional foods: a comprehensive review of literature and patent trends. Crit Rev Food Sci Nutr 2024; 65:2456-2472. [PMID: 38693696 DOI: 10.1080/10408398.2024.2343415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipid-based delivery systems (LDS) have emerged as cornerstone techniques for bolstering the bioavailability of lipophilic bioactive compounds, addressing challenges related to solubility, stability, and absorption. This critical review examined a substantial dataset of 6,907 scientific articles and 3,021 patents from 2001-2023, elucidating the multifaceted evolution of LDS, with a particular focus on its industrial and patent-driven perspective. Notably, there were pronounced surges in functional food patent applications in 2004, 2011, and 2019. The trajectory revealed a shift from foundational nanoemulsions to more complex structures, such as double/multiple emulsions, solid lipid nanoparticles, Pickering emulsions, and bigels. The review further identified the top 10 leading institutions shaping this domain. Technologies like spray-drying, microfluidics, and phase gelation had revolutionized the landscape, resulting in refined sensory experiences, innovative reduced-fat formulations, enriched beverages, tailor-made infant nutrition, and nuanced release mechanisms for flavors. The review also spotlighted current research frontiers, notably Pickering emulsions, bigels, and multiple emulsions. These emerging technologies not only exemplified the ongoing innovation in the field but also underscored their potential in reshaping the future landscape of value-added functional foods.
Collapse
Affiliation(s)
- Xidong Liu
- Library, South China Agricultural University (National Intellectual Property Information Service Center of Universities), Guangzhou, China
| | - Zengliu Song
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Meimiao Chen
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yanping Huang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Tian W, Huang Y, Liu L, Yu Y, Cao Y, Xiao J. Tailoring the oral sensation and digestive behavior of konjac glucomannan-gelatin binary hydrogel based bigel: Effects of composition and ratio. Int J Biol Macromol 2024; 256:127963. [PMID: 37951424 DOI: 10.1016/j.ijbiomac.2023.127963] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
In the food industry, there is a growing demand for bigels that offer both adaptable oral sensations and versatile delivery properties. Herein, we developed bigels using a binary hydrogel of konjac glucomannan (KGM) and gelatin (G) combined with a stearic acid oleogel. We closely examined how the oleogel/hydrogel volume ratio (φ) and the KGM/G mass ratio (γ) influenced various characteristics of the bigels, including their microstructure, texture, rheological properties, thermal-sensitivity, oral tribology, digestive stability, and nutraceutical delivery efficiency. A noteworthy observation was the structural evolution of the bigels with increasing φ values: transitioning from oleogel-in-hydrogel to a bicontinuous structure, and eventually to hydrogel-in-oleogel. Lower γ values yielded a softer, thermally-responsive bigel, whereas higher γ values imparted enhanced viscosity, stickiness, and spreadability to the bigel. Oral tribology assessments demonstrated that φ primarily influenced the friction sensations at lower chewing intensities. In contrast, γ played a significant role in augmenting oral friction perceptions during more intense chewing. Additionally, φ dictated the controlled release and bioaccessibility of curcumin, while γ determined digestive stability. This study provides valuable insights, emphasizing that through meticulous selection and adjustment of the hydrogel matrix composition, bigels can be custom-fabricated to achieve specific oral sensations and regulated digestive behaviors.
Collapse
Affiliation(s)
- Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yushu Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lang Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanshan Yu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Sericultural & Argi-Food Research Institute, Guangzhou 510610, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Wang C, Tian W, Song Z, Wang Q, Cao Y, Xiao J. Effects of solid lipid ratio in curcumin loaded emulsions on its gastrointestinal fate: Colloidal stability and mucus absorption efficiency. Food Res Int 2024; 175:113631. [PMID: 38128976 DOI: 10.1016/j.foodres.2023.113631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 12/23/2023]
Abstract
Emulsions offer a promising approach for enhancing the bioavailability of lipophilic active compounds when administered orally. Nonetheless, the impact of lipid matrix composition on the efficacy of penetration and bioavailability remains uncertain. This research investigated the effects of solid lipid ratio in emulsions on colloidal stability, mucus permeability, and bioavailability in vivo. To assess colloidal stability in the gastrointestinal tract (GIT), Turbiscan was employed. The results indicated that an elevated solid lipid ratio improved intestinal stability through the formation of aggregations that resisted pancreatic absorption, as confirmed by TEM. The absorption in various intestinal sections was tested using the Ussing Chamber model. Notably, emulsion with 0 % solid lipid (G0M10) exhibited the highest cumulative permeation across the duodenum (221.2 ± 21.19 ng), jejunum (713.1 ± 20.93 ng), and ileum (1056.3 ± 392.06 ng) due to its higher in vitro release rate (>60 %) and smaller particle size. The cumulative permeation decreased with increasing solid lipid ratio. CLSM revealed that emulsions with a solid lipid ratio exceeding 50 % exhibited poor mucus permeability within 15 min due to aggregation during the passage in the GIT. However, over an extended penetration time (30 min), higher permeability was observed, reaching approximately 30 μm. In vitro release studies indicated that a higher solid lipid ratio resulted in a reduced release rate of curcumin (<60 %) compared to G0M10 (66.9 ± 3.58 %). Correlation analysis unveiled a positive link between bioavailability and in vitro release rate, while a negative correlation emerged with the solid lipid ratio. This work underscores the significance of solid lipid ratios in emulsions for optimizing bioavailability through their influence on stability, permeability, and release of lipophilic compounds in the GIT.
Collapse
Affiliation(s)
- Chujing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zengliu Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
9
|
Parralejo-Sanz S, Gómez-López I, González-Álvarez E, Montiel-Sánchez M, Cano MP. Oil-Based Double Emulsion Microcarriers for Enhanced Stability and Bioaccessibility of Betalains and Phenolic Compounds from Opuntia stricta var. dillenii Green Extracts. Foods 2023; 12:foods12112243. [PMID: 37297486 DOI: 10.3390/foods12112243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Opuntia cactus fruit (prickly pear flesh and agricultural residues such as peels and stalks) is an important source of bioactive compounds, including betalains and phenolic compounds. In this work, two double emulsion W1/O/W2 formulations (A and B) were designed to encapsulate green extracts rich in betalains and phenolic compounds obtained from Opuntia stricta var. dillenii (OPD) fruits with the aim of improving their stability and protecting them during the in vitro gastrointestinal digestion process. In addition, the characterization of the double emulsions was studied by microscopy and the evaluation of their physical and physico-chemical parameters. Formulation A, based on Tween 20, showed smaller droplets (1.75 µm) and a higher physical stability than Formulation B, which was achieved with sodium caseinate (29.03 µm). Regarding the encapsulation efficiency of the individual bioactives, betalains showed the highest values (73.7 ± 6.7 to 96.9 ± 3.3%), followed by flavonoids (68.2 ± 5.9 to 95.9 ± 7.7%) and piscidic acid (71 ± 1.3 to 70.2 ± 5.7%) depending on the formulation and the bioactive compound. In vitro digestive stability and bioaccessibility of the individual bioactives increased when extracts were encapsulated for both formulations (67.1 to 253.1%) in comparison with the non-encapsulated ones (30.1 to 64.3%), except for neobetanin. Both formulations could be considered as appropriate microcarrier systems for green OPD extracts, especially formulation A. Further studies need to be conducted about the incorporation of these formulations to develop healthier foods.
Collapse
Affiliation(s)
- Sara Parralejo-Sanz
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Iván Gómez-López
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Erika González-Álvarez
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Mara Montiel-Sánchez
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
- Unidad de Investigación y Desarrollo en Alimentos, TecNM/Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz 91897, Mexico
| | - M Pilar Cano
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
10
|
Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydr Polym 2023; 312:120765. [PMID: 37059518 DOI: 10.1016/j.carbpol.2023.120765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Bigels with tunable oral sensation and controlled gastrointestinal digestive profiles are highly demanded in the food industry. A binary hydrogel consisting of different mass ratio of konjac glucomannan to gelatin (φ) was designed to fabricate bigels with stearic acid oleogel. The impacts of φ on the structural, rheological, tribological, flavor release, and delivery properties of bigels were investigated. Structural transition of bigels from hydrogel-in-oleogel to bi-continuous, and then to oleogel-in-hydrogel type, as φ increased from 0.6 to 0.8, and then to 1.0-1.2. Enhanced storage modulus and yield stress were achieved along with the increased φ, while the structure-recovery properties of bigel decreased with increased φ. Under all the tested φ, the viscoelastic modulus and viscosity decreased significantly at oral temperatures but maintained the gel state, and the friction coefficient increased along with the increased φ under high chewing degree. Flexible control over the swelling, the lipid digestion and the release of lipophilic cargos were also observed, with the total release of free fatty acids and quercetin significantly reduced with the increased φ. This study presents a novel manipulation strategy to control oral sensation and gastrointestinal digestive profiles of bigels via tuning the fraction of konjac glucomannan in the binary hydrogel.
Collapse
|
11
|
Zhang J, Zhu J, Cheng Y, Huang Q. Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper. Foods 2023; 12:992. [PMID: 36900509 PMCID: PMC10001147 DOI: 10.3390/foods12050992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Double emulsions are complex emulsion systems with a wide range of applications across different fields, such as pharmaceutics, food and beverage, materials sciences, personal care, and dietary supplements. Conventionally, surfactants are required for the stabilization of double emulsions. However, due to the emerging need for more robust emulsion systems and the growing trends for biocompatible and biodegradable materials, Pickering double emulsions have attracted increasing interest. In comparison to double emulsions stabilized solely by surfactants, Pickering double emulsions possess enhanced stability due to the irreversible adsorption of colloidal particles at the oil/water interface, while adopting desired environmental-friendly properties. Such advantages have made Pickering double emulsions rigid templates for the preparation of various hierarchical structures and as potential encapsulation systems for the delivery of bioactive compounds. This article aims to provide an evaluation of the recent advances in Pickering double emulsions, with a special focus on the colloidal particles employed and the corresponding stabilization strategies. Emphasis is then devoted to the applications of Pickering double emulsions, from encapsulation and co-encapsulation of a wide range of active compounds to templates for the fabrication of hierarchical structures. The tailorable properties and the proposed applications of such hierarchical structures are also discussed. It is hoped that this perspective paper will serve as a useful reference on Pickering double emulsions and will provide insights toward future studies in the fabrication and applications of Pickering double emulsions.
Collapse
Affiliation(s)
| | | | | | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Tian W, Wang H, Zhu Y, Wang Q, Song M, Cao Y, Xiao J. Intervention effects of delivery vehicles on the therapeutic efficacy of 6-gingerol on colitis. J Control Release 2022; 349:51-66. [DOI: 10.1016/j.jconrel.2022.06.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|