1
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Yang D, Liang H, Li X, Zhang C, Lu Z, Ma X. Unleashing the potential of microbial biosynthesis of monoterpenes via enzyme and metabolic engineering. Biotechnol Adv 2025; 79:108525. [PMID: 39921018 DOI: 10.1016/j.biotechadv.2025.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Monoterpenes (MTPs) are valuable isoprenoids widely used in cosmetics, food flavorings, pharmaceuticals, etc. Compared to plant extraction and chemical synthesis, microbial biosynthesis offers superior sustainability and efficiency in producing natural MTPs, overcoming the limitations of raw material dependency, environmental impact, and racemic mixtures inherent in these methods. This review comprehensively discusses the development of natural or non-natural biosynthetic pathways for producing regular and irregular MTPs, emphasizing the importance of enzyme and metabolic engineering to optimize monoterpene synthases (MTPSs) in various engineered microbial cell factories (MCFs). The advances in functional expression of MTPS to enhance enzyme activity, substrate channeling of MTPS with critical biosynthesis enzymes, protein engineering of MTPS, targeted localization of MTPS in the subcellular organelle, and other favorable engineering strategies are discussed in detail. Leveraging these technologies, the engineered microbes will achieve the production of the defined product profile with higher titer/yield/productivity and improved industrial adaptability. Furthermore, we highlight the important development direction for optimizing MTPS performance and biosynthetic pathways, ensuring the microbial production of natural MTPs in a more efficient and application-specific manner.
Collapse
Affiliation(s)
- Dianqi Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuxu Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenyu Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zewei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Martins VDC, da Silva MAE, da Veiga VF, Pereira HMG, de Rezende CM. Ent-Kaurane Diterpenoids from Coffea Genus: An Update of Chemical Diversity and Biological Aspects. Molecules 2024; 30:59. [PMID: 39795116 PMCID: PMC11722336 DOI: 10.3390/molecules30010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Coffee is one of the most important beverages in the world and is produced from Coffea spp. beans. Diterpenes with ent-kaurane backbones have been described in this genus, and substances such as cafestol and kahweol have been widely investigated, along with their derivatives and biological properties. Other coffee ent-kaurane diterpenoids have been reported with new perspectives on their biological activities. The aim of this review is to update the chemical diversity of ent-kaurane diterpenoids in green and roasted coffee, detailing each new compound and reporting its biological potential. A systematic review was performed using the bibliographic databases (SciFinder, Web of Science, ScienceDirect) and specific keywords such as "coffea diterpenes", "coffee diterpenes", "coffee ent-kaurane diterpenes" and "coffee diterpenoids". Only articles related to the isolation of coffee ent-kaurane compounds were considered. A total of 146 compounds were related to Coffea spp. since the first report in 1932. Different chemical skeletons were observed, and these compounds were grouped as furan-type, oxidation-type, rearrangement-type, lacton-type, and lactam-type, among others. In general, the new coffee diterpenoids showed potential as antidiabetic, antidiapogenic, α-glucosidade inhibition, antiplatelet activity, and Cav.3 inhibitors agents, revealing the possibilities for the design, discovery, and development of new drugs.
Collapse
Affiliation(s)
- Víctor de C. Martins
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
- Brazilian Doping Control Laboratory (LBCD), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Maria Alice E. da Silva
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
| | - Valdir F. da Veiga
- Chemistry Section, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil;
| | - Henrique M. G. Pereira
- Brazilian Doping Control Laboratory (LBCD), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Claudia M. de Rezende
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
| |
Collapse
|
4
|
Guo D, Zhang Z, Sun J, Hou W, Du N. A primitive cell model involving Vesicles, microtubules and asters. J Colloid Interface Sci 2024; 675:700-711. [PMID: 38996700 DOI: 10.1016/j.jcis.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
HYPOTHESIS Simple single-chain amphiphiles (sodium monododecyl phosphate, SDP) and organic small molecules (isopentenol, IPN), both of primitive relevance, are proved to have been the building blocks of protocells on the early Earth. How do SDP-based membrane and coexisting IPN come together in specific ways to produce more complex chemical entities? What kind of cell-like behavior can be endowed with this protocell model? These are important questions in the pre-life chemical origin scenario that have not been answered to date. EXPERIMENTS The phase behavior and formation mechanism of the aggregates for SDP/IPN/H2O ternary system were characterized and studied by different electron microscopy, fluorescent probe technology, DLS, IR, ESI-MS, SAXS, etc. The stability (freeze-thaw and wet-dry treatments) and cell-like behavior (chemical signaling communication) were tested via simulating particular scenarios. FINDINGS Vesicles, microtubules and asters phases resembling the morphology and structure of modern cells/organelles were obtained. The intermolecular hydrogen bonding is the main driving force for the emergence of the aggregates. The protocell models not only display remarkable stabilities by simulating the primordial Earth's diurnal temperature differences and ocean tides but also are able to exhibit cell-like behavior of chemical signaling transition.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ziyue Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jichao Sun
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, PR China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
5
|
Li G, Liang H, Gao R, Qin L, Xu P, Huang M, Zong MH, Cao Y, Lou WY. Yeast metabolism adaptation for efficient terpenoids synthesis via isopentenol utilization. Nat Commun 2024; 15:9844. [PMID: 39537637 PMCID: PMC11561230 DOI: 10.1038/s41467-024-54298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial biosynthesis has become the leading commercial approach for large-scale production of terpenoids, a valuable class of natural products. Enhancing terpenoid production, however, requires complex modifications on the host organism. Recently, a two-step isopentenol utilization (IU) pathway relying solely on ATP as the cofactor has been proposed as an alternative to the mevalonate (MVA) pathway, streamlining the synthesis of the common terpenoid precursors. Herein, we find that isopentenol inhibits energy metabolism, leading to reduced efficiency of the IU pathway in Saccharomyces cerevisiae. To overcome this, we engineer an IU pathway-dependent (IUPD) strain, designed for growth-coupled production. The IUPD strain is compelled to enhance the ATP supply, essential for the IU pathway, and incorporates a high-throughput screening method for enzyme evolution. The refined IU pathway surpasses the MVA pathway in synthesizing complex terpenoids. Our work offers valuable insights into developing growth-coupled strains adapted to efficient natural product synthesis.
Collapse
Affiliation(s)
- Guangjian Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Hui Liang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Ruichen Gao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Ling Qin
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Pei Xu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Mingtao Huang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Yufei Cao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Yang D, Li X, Zhang C, Liang H, Ma X. Bioproduction of Geranyl Esters by Integrating Microbial Biosynthesis and Enzymatic Conversion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24677-24686. [PMID: 39437419 DOI: 10.1021/acs.jafc.4c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Geranyl esters (GEs) are valuable monoterpene esters derived from the esterification of geraniol and various carboxylic acids with a range of unique aromas and properties, making them valuable in perfumery, pharmaceutical, and cosmetic applications. Lipase-mediated esterification is considered to be a sustainable process but is challenged by the lack of a compatible catalytic method in conjunction with a customized microbial biosynthesis of geraniol. In this study, we developed an integrated process to convert glycerol and various carboxylates into GEs. The process includes microbial biosynthesis of geraniol using metabolically engineered Escherichia coli and enzymatic conversion of geraniol into GEs in a fermentation medium-organic biphasic system using an immobilized lipase. The enzymatic step for esterifying the target carboxylates with geraniol achieved >90% conversion under the optimized condition. Coupled with the geraniol from microbial fermentation, 0.59 g/L geranyl butyrate and 1.04 g/L geranyl hexanoate were produced subsequently, demonstrating the feasibility of converting renewable source into monoterpene esters through this integrated process, which bypassed feeding extra geraniol in the conventional lipase-mediated GE synthesis.
Collapse
Affiliation(s)
- Dianqi Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuxu Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenyu Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Liang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Hoekzema M, Jiang J, Driessen AJM. Optimizing Archaeal Lipid Biosynthesis in Escherichia coli. ACS Synth Biol 2024; 13:2470-2479. [PMID: 39096298 PMCID: PMC11334171 DOI: 10.1021/acssynbio.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Membrane lipid chemistry is remarkably different in archaea compared with bacteria and eukaryotes. In the evolutionary context, this is also termed the lipid divide and is reflected by distinct biosynthetic pathways. Contemporary organisms have almost without exception only one type of membrane lipid. During early membrane evolution, mixed membrane stages likely occurred, and it was hypothesized that the instability of such mixtures was the driving force for the lipid divide. To examine the compatibility between archaeal and bacterial lipids, the bacterium Escherichia coli has been engineered to contain both types of lipids with varying success. Only limited production of archaeal lipid archaetidylethanolamine was achieved. Here, we substantially increased its production in E. coli by overexpression of an archaeal phosphatidylserine synthase needed for ethanolamine headgroup attachment. Furthermore, we introduced a synthetic isoprenoid utilization pathway to increase the supply of isopentenyl-diphosphate and dimethylallyl diphosphate. This improved archaeal lipid production substantially. The archaeal phospholipids also served as a substrate for the E. coli cardiolipin synthase, resulting in archaeal and novel hybrid archaeal/bacterial cardiolipin species not seen in living organisms before. Growth of the E. coli strain with the mixed membrane shows an enhanced sensitivity to the inhibitor of fatty acid biosynthesis, cerulenin, indicating a critical dependence of the engineered E. coli strain on its native phospholipids.
Collapse
Affiliation(s)
- Mirthe Hoekzema
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Jiayi Jiang
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| |
Collapse
|
8
|
Fordjour E, Liu CL, Yang Y, Bai Z. Recent advances in lycopene and germacrene a biosynthesis and their role as antineoplastic drugs. World J Microbiol Biotechnol 2024; 40:254. [PMID: 38916754 DOI: 10.1007/s11274-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of β-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Guo D, Zhang Z, Sun J, Zhao H, Hou W, Du N. A Fusion-Growth Protocell Model Based on Vesicle Interactions with Pyrite Particles. Molecules 2024; 29:2664. [PMID: 38893538 PMCID: PMC11173516 DOI: 10.3390/molecules29112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Protocell models play a pivotal role in the exploration of the origin of life. Vesicles are one type of protocell model that have attracted much attention. Simple single-chain amphiphiles (SACs) and organic small molecules (OSMs) possess primitive relevance and were most likely the building blocks of protocells on the early Earth. OSM@SAC vesicles have been considered to be plausible protocell models. Pyrite (FeS2), a mineral with primitive relevance, is ubiquitous in nature and plays a crucial role in the exploration of the origin of life in the mineral-water interface scenario. "How do protocell models based on OSM@SAC vesicles interact with a mineral-water interface scenario that simulates a primitive Earth environment" remains an unresolved question. Hence, we select primitive relevant sodium monododecyl phosphate (SDP), isopentenol (IPN) and pyrite (FeS2) mineral particles to build a protocell model. The model investigates the basic physical and chemical properties of FeS2 particles and reveals the effects of the size, content and duration of interaction of FeS2 particles on IPN@SDP vesicles. This deepens the understanding of protocell growth mechanisms in scenarios of mineral-water interfaces in primitive Earth environments and provides new information for the exploration of the origin of life.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ziyue Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jichao Sun
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hui Zhao
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
| | - Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Liu Z, Huang M, Chen H, Lu X, Tian Y, Hu P, Zhao Q, Li P, Li C, Ji X, Liu H. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. BIORESOURCE TECHNOLOGY 2024; 394:130233. [PMID: 38141883 DOI: 10.1016/j.biortech.2023.130233] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Squalene is an important triterpene with a wide range of applications. Given the growing market demand for squalene, the development of microbial cell factories capable of squalene production is considered a sustainable method. This study aimed to investigate the squalene production potential of Yarrowia lipolytica. First, HMG-CoA reductase from Saccharomyces cerevisiae and squalene synthase from Y. lipolytica was co-overexpressed in Y. lipolytica. Second, by enhancing the supply of NADPH in the squalene synthesis pathway, the production of squalene in Y. lipolytica was effectively increased. Furthermore, by constructing an isoprenol utilization pathway and overexpressing YlDGA1, the strain YLSQ9, capable of producing 868.1 mg/L squalene, was obtained. Finally, by optimizing the fermentation conditions, the highest squalene concentration of 1628.2 mg/L (81.0 mg/g DCW) in Y. lipolytica to date was achieved. This study demonstrated the potential for achieving high squalene production using Y. lipolytica.
Collapse
Affiliation(s)
- Ziying Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mingkang Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hong Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Pengcheng Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiaoqin Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
11
|
Wang YZ, Jing HY, Li X, Zhang F, Sun XM. Rapid construction of Escherichia coli chassis with genome multi-position integration of isopentenol utilization pathway for efficient and stable terpenoid accumulation. Biotechnol J 2023; 18:e2300283. [PMID: 37478165 DOI: 10.1002/biot.202300283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
The isopentenol utilization pathway (IUP) is potential in terpenoids synthesis. This study aimed to construct IUP-employed Escherichia coli chassis for stably synthesizing terpenoids. As to effectiveness, promotor engineering strategy was employed to regulate IUP expression level, while ribosome-binding site (RBS) library of the key enzyme was constructed for screening the optimal RBS, followed by optimization of concentration of inducer and substrates, the titer of reporting production, lycopene, from 0.087 to 8.67 mg OD600 -1 . As about stability, the IUP expression cassette was integrated into the genome through transposition tool based on CRISPR-associated transposases. Results showed that the strain with 13 copies produced 1.78-fold lycopene titer that of the controlled strain with IUP-harbored plasmid, and it exhibited stable expression after ten successions while the plasmid loss was observed in the controlled strain in the 3rd succession. This strategy provides valuable information for rapid construction of highly effective and stable chassis employing IUP for terpenoids production.
Collapse
Affiliation(s)
- Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Hong-Yan Jing
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
12
|
Fordjour E, Bai Z, Li S, Li S, Sackey I, Yang Y, Liu CL. Improved Membrane Permeability via Hypervesiculation for In Situ Recovery of Lycopene in Escherichia coli. ACS Synth Biol 2023; 12:2725-2739. [PMID: 37607052 DOI: 10.1021/acssynbio.3c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene biosynthesis is frequently hampered by downstream processing hugely due to its inability to be secreted out from the producing chassis. Engineering cell factories can resolve this issue by secreting this hydrophobic compound. A highly permeable E. coli strain was developed for a better release rate of lycopene. Specifically, the heterologous mevalonate pathway and crtEBI genes from Corynebacterium glutamicum were overexpressed in Escherichia coli BL21 (DE3) for lycopene synthesis. To ensure in situ lycopene production, murein lipoprotein, lipoprotein NlpI, inner membrane permease protein, and membrane-anchored protein in TolA-TolQ-TolR were deleted for improved membrane permeability. The final strain, LYC-8, produced 438.44 ± 8.11 and 136.94 ± 1.94 mg/L of extracellular and intracellular lycopene in fed-batch fermentation. Both proteomics and lipidomics analyses of secreted outer membrane vesicles were perfect indicators of hypervesiculation. Changes in the ratio of saturated fatty acids, unsaturated fatty acids, and cyclopropane fatty acids coupled with the branching and acyl chain lengths altered the membrane fatty acid composition. This ensured membrane fluidity and permeability for in situ lycopene release. The combinatorial deletion of these genes altered the cellular morphology. The structural and morphological changes in cell shape, size, and length were associated with changes in the mechanical strength of the cell envelope. The enhanced lycopene production and secretion mediated by improved membrane permeability established a cell lysis-free system for an efficient releasing rate and downstream processing, demonstrating the importance of vesicle-associated membrane permeability in efficient lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sihan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shijie Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Isaac Sackey
- Department of Biological Sciences, Faculty of Biosciences, University for Development Studies, P.O. Box TL1350, NT-0272-1946 Tamale, Ghana
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Zhang X, Wang X, Zhang Y, Wang F, Zhang C, Li X. Development of isopentenyl phosphate kinases and their application in terpenoid biosynthesis. Biotechnol Adv 2023; 64:108124. [PMID: 36863457 DOI: 10.1016/j.biotechadv.2023.108124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
As the largest class of natural products, terpenoids (>90,000) have multiple biological activities and a wide range of applications (e.g., pharmaceutical, agricultural, personal care and food industries). Therefore, the sustainable production of terpenoids by microorganisms is of great interest. Microbial terpenoid production depends on two common building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In addition to the natural biosynthetic pathways, mevalonate and methyl-D-erythritol-4-phosphate pathways, IPP and DMAPP can be produced through the conversion of isopentenyl phosphate and dimethylallyl monophosphate by isopentenyl phosphate kinases (IPKs), offering an alternative route for terpenoid biosynthesis. This review summarizes the properties and functions of various IPKs, novel IPP/DMAPP synthesis pathways involving IPKs, and their applications in terpenoid biosynthesis. Furthermore, we have discussed strategies to exploit novel pathways and unleash their potential for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Pan Q, Ma X, Liang H, Liu Y, Zhou Y, Stephanopoulos G, Zhou K. Biosynthesis of geranate via isopentenol utilization pathway in Escherichia coli. Biotechnol Bioeng 2023; 120:230-238. [PMID: 36224741 PMCID: PMC10092522 DOI: 10.1002/bit.28255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Isoprenoids are a large family of natural products with diverse structures, which allow them to play diverse and important roles in the physiology of plants and animals. They also have important commercial uses as pharmaceuticals, flavoring agents, fragrances, and nutritional supplements. Recently, metabolic engineering has been intensively investigated and emerged as the technology of choice for the production of isoprenoids through microbial fermentation. Isoprenoid biosynthesis typically originates in plants from acetyl-coA in central carbon metabolism, however, a recent study reported an alternative pathway, the isopentenol utilization pathway (IUP), that can provide the building blocks of isoprenoid biosynthesis from affordable C5 substrates. In this study, we expressed the IUP in Escherichia coli to efficiently convert isopentenols into geranate, a valuable isoprenoid compound. We first established a geraniol-producing strain in E. coli that uses the IUP. Then, we extended the geraniol synthesis pathway to produce geranate through two oxidation reactions catalyzed by two alcohol/aldehyde dehydrogenases from Castellaniella defragrans. The geranate titer was further increased by optimizing the expression of the two dehydrogenases and also parameters of the fermentation process. The best strain produced 764 mg/L geranate in 24 h from 2 g/L isopentenols (a mixture of isoprenol and prenol). We also investigated if the dehydrogenases could accept other isoprenoid alcohols as substrates.
Collapse
Affiliation(s)
- Qiuchi Pan
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoqiang Ma
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yurou Liu
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Ying Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Wang Q, Qi P, Zhao C, Zhang Y, Wang L, Yu H. Tandem expression of Ganoderma sinense sesquiterpene synthase and IDI promotes the production of gleenol in E. coli. Appl Microbiol Biotechnol 2022; 106:7779-7791. [DOI: 10.1007/s00253-022-12248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022]
|
16
|
Li FR, Lin X, Yang Q, Tan NH, Dong LB. Efficient production of clerodane and ent-kaurane diterpenes through truncated artificial pathways in Escherichia coli. Beilstein J Org Chem 2022; 18:881-888. [PMID: 35957755 PMCID: PMC9344551 DOI: 10.3762/bjoc.18.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
The clerodane and ent-kaurane diterpenoids are two typical categories of diterpenoid natural products with complicated polycyclic carbon skeletons and significant pharmacological activities. Despite exciting advances in organic chemistry, access to these skeletons is still highly challenging. Using synthetic biology to engineer microbes provides an innovative alternative to bypass synthetic challenges. In this study, we constructed two truncated artificial pathways to efficiently produce terpentetriene and ent-kaurene, two representative clerodane and ent-kaurane diterpenes, in Escherichia coli. Both pathways depend on the exogenous addition of isoprenoid alcohol to reinforce the supply of IPP and DMAPP via two sequential phosphorylation reactions. Optimization of these constructs provided terpentetriene and ent-kaurene titers of 66 ± 4 mg/L and 113 ± 7 mg/L, respectively, in shake-flask fermentation. The truncated pathways to overproduce clerodane and ent-kaurane skeletons outlined here may provide an attractive route to prepare other privileged diterpene scaffolds.
Collapse
Affiliation(s)
- Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
17
|
Combinatorial Engineering of Upper Pathways and Carotenoid Cleavage Dioxygenase in Escherichia coli for Pseudoionone Production. Appl Biochem Biotechnol 2022; 194:5977-5991. [DOI: 10.1007/s12010-022-04078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
|