1
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
2
|
Zhang Y, Liu Z, Sun Y, Du Y, Zhao Z, Liu Q, Song Y. Lipid production from corn straw by cellobiohydrolase and delta-6 desaturase engineered Mucor circinelloides strains under solid state fermentation. Sci Rep 2024; 14:18784. [PMID: 39138250 PMCID: PMC11322153 DOI: 10.1038/s41598-024-68499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Previously, we constructed engineered M. circinelloides strains that can not only utilize cellulose, but also increase the yield of γ-linolenic acid (GLA). In the present study, an in-depth analysis of lipid accumulation by engineered M. circinelloides strains using corn straw was to be explored. When a two-stage temperature control strategy was adopted with adding 1.5% cellulase and 15% inoculum, the engineered strains led to increases in the lipid yield (up to 1.56 g per 100 g dry medium) and GLA yield (up to 274 mg per 100 g dry medium) of 1.8- and 2.3-fold, respectively, compared with the control strain. This study proved the engineered M. circinelloides strains, especially for Mc-C2PD6, possess advantages in using corn straw to produce GLA. This work provided a reference for transformation from agricultural cellulosic waste to functional lipid in one step, which might play a positive role in promoting the sustainable development of biological industry.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Zhuo Liu
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Yan Sun
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Yuanxin Du
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Zixuan Zhao
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Qing Liu
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Chang L, Zhang H, Chen YQ, Chen W, Chen H. Characterization of Three Types of Elongases from Different Fungi and Site-Directed Mutagenesis. J Fungi (Basel) 2024; 10:129. [PMID: 38392800 PMCID: PMC10890106 DOI: 10.3390/jof10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Fatty acid elongases play crucial roles in synthesizing long-chain polyunsaturated fatty acids. Identifying more efficient elongases is essential for enhancing oleaginous microorganisms to produce high yields of target products. We characterized three elongases that were identified with distinct specificities: McELO from Mucor circinelloides, PrELO from Phytophthora ramorum, and PsELO from Phytophthora sojae. Heterologous expression in Saccharomyces cerevisiae showed that McELO preferentially elongates C16 to C18 fatty acids, PrELO targets Δ6 polyunsaturated fatty acids, and PsELO uses long chain saturated fatty acids as substrates. McELO and PrELO exhibited more homology, potentially enabling fatty acid composition remodeling and enhanced LC-PUFAs production in oleaginous microorganisms. Site-directed mutagenesis of conserved amino acids across elongase types identified residues essential for activity, supported by molecular docking. Alanine substitution of conserved polar residues led to enzyme inactivation, underscoring their importance in the condensation reaction. Our findings offer promising elongase candidates for polyunsaturated fatty acid production, contributing to the bioindustry's sustainable development.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zhang Y, Yang Y, Liu Q, Li S, Song Y. Lipid Accumulation by Snf-β Engineered Mucor circinelloides Strains on Glucose and Xylose. Appl Biochem Biotechnol 2023; 195:7697-7707. [PMID: 37086376 DOI: 10.1007/s12010-023-04531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays the regulatory roles in the utilization of selective carbon sources and lipid metabolism. Previously, the role of β subunit of SNF1 in lipid accumulation was evaluated by overexpression and knockout of Snf-β in oleaginous fungus M. circinelloides. In the present study, the growth and lipid accumulation of Snf-β overexpression and knockout strains were further analyzed and compared with glucose or xylose as a single or mixed carbon sources. The results showed that the lipid contents in Snf-β knockout strain improved by 23.2% (for glucose), 28.4% (for xylose), and 30.5% (for mixed glucose and xylose) compared with that of the control strain, respectively. The deletion of Snf-β subunit also altered the transcriptional level of acetyl-CoA carboxylase (ACC). The highest transcriptional levels of ACC1 in Snf-β knockout strain at 24 h were increased by 2.4-fold (for glucose), 2.8-fold (for xylose), and 3.1-fold (for mixed glucose and xylose) compared with that of the control strain, respectively. Our results indicated that Snf-β subunit enhanced lipid accumulation through the regulation of ACC1 in response to xylose or mixed sugars of glucose and xylose more significantly than that of response to glucose. This is the first study to explore the effect of Snf-β subunit of M. circinelloides in regulating lipid accumulation responding to different carbon nutrient signals of glucose and xylose. This study provides a foundation for the future application of the Snf-β engineered strains in lipid production from lignocellulose.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
5
|
Li S, Tahiri G, Yang J, Mohamed H, Liu Q, Shi W, López-García S, Garre V, Song Y. Role of AMP Deaminase in Mucor circinelloides: Implications for Nitrogen Utilization and Lipid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15680-15691. [PMID: 37822229 DOI: 10.1021/acs.jafc.3c04574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Lipid accumulation in oleaginous organisms is initiated by AMP deaminase (AMPD) after nitrogen depletion because it mediates the concentration of intracellular adenosine monophosphate (AMP). However, the role of AMPD in lipogenesis in the oleaginous fungus Mucor circinelloides is largely unknown. Therefore, we identified the genes (ampd1 and ampd2) encoding AMPD and investigated the role of AMPD in lipid synthesis in this fungus by overexpressing and deleting ampd genes. Deletion of ampd1 and ampd2 caused 21 and 28% increments in lipid contents under N-limited conditions, respectively. These increases were correlated with the activation of enzymes involved in lipogenesis and the alteration of energy balance. Unexpectedly, overexpression of ampd genes affected nitrogen consumption in both N-limited and N-excess media, which resulted in an increase in cell growth and lipid accumulation compared with the control strain when nitrogen was available. Furthermore, the increased lipid accumulation in the ampd-overexpressing mutants in N-excess media was accompanied by enhanced activities of lipid biosynthetic enzymes. These data suggested that nitrogen metabolism and energy metabolism are affected by AMPD, and overexpression of ampd genes induced lipid accumulation under nitrogen-rich conditions by mimicking the nitrogen limitation response. This highlights an intriguing function of AMPD in M. circinelloides.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Ghizlane Tahiri
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 3100, Spain
| | - Junhuan Yang
- Department of Food Science, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wenyue Shi
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Sergio López-García
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 3100, Spain
| | - Victoriano Garre
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 3100, Spain
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
6
|
Zhang Y, Yang Y, Zhang S, Liu Q, Dang W, Song Y. Lipid accumulation and SNF1 transcriptional analysis of Mucor circinelloides on xylose under nitrogen limitation. Antonie Van Leeuwenhoek 2023; 116:383-391. [PMID: 36656419 DOI: 10.1007/s10482-023-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Sucrose non-fermenting 1 (SNF1) plays a crucial role in utilizing non-glucose carbon sources and regulating lipid metabolism. However, the mechanism by which SNF1 regulates lipid accumulation in oleaginous filamentous fungi in response to nutrient signals remains unclear. In the present study, by analysing the growth and lipid accumulation of M. circinelloides on xylose under nitrogen limitation, combined with the transcriptional changes of each subunit of SNF1, the regulation of SNF1 between nutrient signal and lipid accumulation was explored. The results showed that with the increase of carbon/nitrogen (C/N) ratio, the xylose consumption and cell growth of M. circinelloides decreased, and the lipid accumulation increased gradually. The optimal C/N ratio was 160:1, and the maximum lipid yield was 4.1 g/L. Two subunits of SNF1, Snf-α1 and Snf-β, are related to the regulation of lipid metabolism in response to nutrient signals from different external nitrogen sources. This is the first report on the transcriptional analysis of SNF1 subunits on xylose metabolism under nitrogen limitation. This study provides a basis for further understanding of lipid synthesis mechanism on xylose in oleaginous fungi, and it also lays a foundation for the genetic engineering of high-lipid strain.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Silu Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
7
|
Zhang Y, Yang Y, Zhang H, Liu Q, Song Y. Effect of Different Carbons on Lipid Production and SNF1 Transcription in Mucor Circinelloides. Indian J Microbiol 2023; 63:146-151. [PMID: 37188240 PMCID: PMC10172402 DOI: 10.1007/s12088-023-01070-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays an important role in the utilization of selective carbon sources and regulation of lipid metabolism. In order to further explore the function of SNF1 in regulating lipid accumulation by responding nutritional signals from non-glucose carbon sources, in the present study, the lipid production and SNF1 transcriptional levels of Mucor circinelloides were analyzed and compared on different carbon sources. The results indicated that M. circinelloides could effectively utilize some secondary metabolic carbon sources of monosaccharides and disaccharides for growth and lipids production, such as fructose, maltose and galactose. Snf-β subunit was associated with the regulation of lipid metabolism in response to nutritional signals from different carbon sources. This is the first report on the transcriptional analysis of SNF1 subunits on different carbons metabolism in oleaginous filamentous fungi. This research has suggested that genetic engineering of SNF1 subunits will alter the lipid production of M. circinelloides from alternative carbon sources. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01070-z.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022 People’s Republic of China
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Han Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Qiu Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| |
Collapse
|
8
|
Wang X, Yang J, Mohamed H, Shah AM, Li S, Pang S, Wu C, Xue F, Shi W, Sadaqat B, Song Y. Simultaneous overexpression of ∆6-, ∆12- and ∆9-desaturases enhanced the production of γ-linolenic acid in Mucor circinelloides WJ11. Front Microbiol 2022; 13:1078157. [PMID: 36590442 PMCID: PMC9797528 DOI: 10.3389/fmicb.2022.1078157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022] Open
Abstract
Mucor circinelloides WJ11, an oleaginous filamentous fungus, produces 36% lipid of its cell dry weight when cultured in a high C/N ratio medium, however, the yield of γ-linolenic acid (GLA) is insufficient to make it competitive with other plant sources. To increase the GLA content in M. circinelloides WJ11, this fungus was engineered by overexpression of its key genes such as Δ6-, Δ12-, and Δ9-desaturases involved in GLA production. Firstly, we tried to overexpress two Δ6-desaturase isozymes to determine which one played important role in GLA synthesis. Secondly, Δ6-and Δ12-desaturase were co-overexpressed to check whether linoleic acid (LA), the precursor for GLA synthesis, is a limiting factor or not. Moreover, we tried to explore the effects of simultaneous overexpression of Δ6-, Δ12-, and Δ9-desaturases on GLA production. Our results showed that overexpression (1 gene) of DES61 promoted higher GLA content (21% of total fatty acids) while co-overexpressing (2 genes) DES61 and DES12 and simultaneous overexpressing (3 genes) DES61, DES12, and DES91 increased the GLA production of engineered strains by 1.5 folds and 1.9 folds compared to the control strain, respectively. This study provided more insights into GLA biosynthesis in oleaginous fungi and laid a foundation for further increase in GLA production into fungus such as M. circinelloides.
Collapse
Affiliation(s)
- Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Junhuan Yang
- Department of Food Sciences, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Aabid Manzoor Shah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Futing Xue
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wenyue Shi
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Beenish Sadaqat
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China,*Correspondence: Yuanda Song,
| |
Collapse
|
9
|
Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules 2022; 27:molecules27175511. [PMID: 36080278 PMCID: PMC9457725 DOI: 10.3390/molecules27175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Linolenic acid (LA) is gaining more interest within the scientific community. This is because it has a potential medical role in reducing the risk of inflammation, carcinogenesis, atherosclerosis and diabetes and is a valuable nutraceutical for human health. The oleaginous fungus Mucor circinelloides produces a high lipid content (36%), including valuable polyunsaturated fatty acids (PUFAs). However, the critical step in which oleic acid (OA) is converted into LA is not efficient at supplying enough substrates for PUFA synthesis. Hence, we propose a method to increase LA production based on genetic engineering. The overexpression of the Δ12-desaturase gene from M. circinelloides and Mortierella alpina increased the LA content and improved the lipid accumulation (from 14.9% to 21.6% in the Δ12-desaturase gene of the M. circinelloides overexpressing strain (Mc-D12MC) and from 14.9% to 18.7% in the Δ12-desaturase gene of M. alpina overexpressing strain (Mc-D12MA)). Additionally, the up-regulated expression levels of these genes targeted the genes involved in NADPH production, implying that the elevated Δ12-desaturase gene may function as a critical regulator of NADPH and lipid synthesis in M. circinelloides. This study provides the first evidence to support the design of metabolic engineering related to LA and PUFA production in M. circinelloides for potential industrial applications.
Collapse
|
10
|
Li S, Yang J, Mohamed H, Wang X, Pang S, Wu C, López-García S, Song Y. Identification and Functional Characterization of Adenosine Deaminase in Mucor circinelloides: A Novel Potential Regulator of Nitrogen Utilization and Lipid Biosynthesis. J Fungi (Basel) 2022; 8:jof8080774. [PMID: 35893142 PMCID: PMC9332508 DOI: 10.3390/jof8080774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme distributed in a wide variety of organisms that cleaves adenosine into inosine. Since inosine plays an important role in nitrogen metabolism, ADA may have a critical function in the regulation of fatty acid synthesis. However, the role of ADA in oleaginous fungi has not been reported so far. Therefore, in this study, we identified one ada gene encoding ADA (with ID scaffold0027.9) in the high lipid-producing fungus, Mucor circinelloides WJ11, and investigated its role in cell growth, lipid production, and nitrogen metabolism by overexpressing and knockout of this gene. The results showed that knockout of the ada altered the efficiency of nitrogen consumption, which led to a 20% increment in the lipid content (25% of cell dry weight) of the engineered strain, while overexpression of the ada showed no significant differences compared with the control strain at the final growth stage; however, interestingly, it increased lipid accumulation at the early growth stage. Additionally, transcriptional analysis was conducted by RT-qPCR and our findings indicated that the deletion of ada activated the committed steps of lipid biosynthesis involved in acetyl-CoA carboxylase (acc1 gene), cytosolic malic acid enzyme (cme1 gene), and fatty acid synthases (fas1 gene), while it suppressed the expression of AMP-activated protein kinase (ampk α1 and ampk β genes), which plays a role in lipolysis, whereas the ada-overexpressed strain displayed reverse trends. Conclusively, this work unraveled a novel role of ADA in governing lipid biosynthesis and nitrogen metabolism in the oleaginous fungus, M. circinelloides.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Junhuan Yang
- Department of Food Sciences, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
| | - Sergio López-García
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 3100 Murcia, Spain;
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (S.L.); (H.M.); (X.W.); (S.P.); (C.W.)
- Correspondence: ; Tel.: +86-13964463099
| |
Collapse
|