1
|
Maienfisch P, Koerber K. Recent innovations in crop protection research. PEST MANAGEMENT SCIENCE 2025; 81:2406-2418. [PMID: 39344983 PMCID: PMC11981984 DOI: 10.1002/ps.8441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
As the world's population continues to grow and demand for food increases, the agricultural industry faces the challenge of producing higher yields while ensuring the safety and quality of harvests, operators, and consumers. The emergence of resistance, pest shifts, and stricter regulatory requirements also urgently calls for further advances in crop protection and the discovery of new innovative products for sustainable crop protection. This study reviews recent highlights in innovation as presented at the 15th IUPAC International Congress of Crop Protection Chemistry held in New Delhi, in 2023. The following new products are discussed: the insecticides Indazapyroxamet, Dimpropyridaz and Fenmezoditiaz, the fungicides Mefentrifluconazole and Pyridachlomethyl, the nematicide Cyclobutrifluram, the herbicides Rimisoxafen, Dimesulfazet, and Epyrifenacil as well as the abiotic stress management product Anisiflupurin. In addition, the latest innovative research areas and discovery highlights in all areas of crop protection will be presented, including insecticidal alkyl sulfones and 1,3,4-trisubstituted pyrazoles, fungicidal picolinamides, herbicidal ketoenols, and trifluoromethylpyrazoles, as well as the latest advances in crop enhancement and green pest control research. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
2
|
Hodges D. Discovery, research and development of axalion® active insecticide: dimpropyridaz †. PEST MANAGEMENT SCIENCE 2025; 81:2529-2534. [PMID: 39320022 PMCID: PMC11981975 DOI: 10.1002/ps.8385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
Dimpropyridaz is a novel insecticide active ingredient (a.i.) for the control of piercing and sucking pests. The discovery of dimpropyridaz included the synthesis of thousands of compound analogs which were investigated for their potential efficacy and registrability. Dimpropyridaz is the sole representative of the pyridazine pyrazolecarboxamide class, Insecticide Resistance Action Committee (IRAC) Group 36. The novel mode of action is characterized by disrupting the function of an insect's chordotonal organs in a way that is distinctly different from IRAC Groups 9 and 29. Dimpropyridaz demonstrates translaminar and systemic effects as well as high selectivity, providing both application flexibility and, when applied according to the label, beneficial organism, and environmental compatibility. Dimpropyridaz, powered formulations will be available in select markets, covering a broad range of vegetable, fruit, row crop, and ornamental production segments. Dimpropyridaz also has commercial registered name: Axalion Active. This review will focus on a broad outline of the chemical preparation, regulatory overview, and select biological performance and represents a summary of the information shared during the invited lecture at the 15th IUPAC (International Union of Pure and Applied Chemistry) International Congress of Crop Protection Chemistry held in New Delhi, India in March 2023. © 2024 BASF. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Desirée Hodges
- Global Insecticides Research and Development ‐ AgronomyBASF CorporationResearch Triangle ParkNCUSA
| |
Collapse
|
3
|
Xie Y, Zhang LH, Xuan J. Photoinduced Formal Cross-[3+3] Cycloaddition of Vinyldiazo Reagents with Acceptor-Only Diazoalkanes. Org Lett 2025; 27:3117-3122. [PMID: 40119813 DOI: 10.1021/acs.orglett.4c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
In this study, we devised an innovative approach for the synthesis of pyrazine derivatives through a photoinduced formal cross-[3+3] cycloaddition between vinyldiazo reagents and acceptor-only diazoalkanes. This method leverages the differential reactivity of two distinct diazo compounds: vinyldiazo reagents, which upon visible light irradiation form key cyclopropane intermediates, and acceptor-only diazoalkanes, which function as 1,3-dipoles to capture the photogenerated reactive species. The reactions proceed exclusively under visible light, yielding 1,4-dihydropyridazines with a broad substrate scope and compatibility with various functional groups. Importantly, the synthesized 1,4-dihydropyridazines can be readily converted to other valuable products. The mechanism, elucidated through UV-vis absorption studies, deuterium labeling experiments, control experiments, and in situ NMR spectroscopy, provides a clear understanding of the observed reactivity.
Collapse
Affiliation(s)
- Yang Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Li-Hua Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
| |
Collapse
|
4
|
Song X, Wang H, Zou W, Hong H, Gao Y, Zhao C, Xu H, Yao G. New Isoxazoline Cyclopropyl-Picolinamide Derivatives as Potential Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6589-6598. [PMID: 40053680 DOI: 10.1021/acs.jafc.5c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Isoxazoline insecticides exhibit broad-spectrum insecticidal activity against insect pests. However, the high toxicity to honeybees limits their application in pest management. To explore reducing the toxicity of isoxazoline derivatives to bees, a series of new isoxazoline cyclopropyl-picolinamide derivatives were designed and synthesized. Bioassays revealed that FSA37 showed excellent insecticidal activity against Plutella xylostella, Spodoptera litura, and Spodoptera exigua, with LC50 values of 0.077, 0.104, and 0.198 mg/L, respectively. These results surpass those of fluxametamide, which displayed LC50 values of 0.605, 0.853, and 1.254 mg/L. Furthermore, FSA37 exhibited notable insecticidal activity against Solenopsis invicta. Importantly, bee toxicity studies indicated that FSA37 possesses significantly lower acute oral toxicity compared to fluralaner and fluxametamide. Quantum chemical calculations and molecular docking studies suggest that the cyclopropyl-picolinamide fragment may be crucial for both biological activity and the safety of nontarget organisms. In conclusion, FSA37 represents a promising candidate for a highly effective and environmentally friendly insecticide.
Collapse
Affiliation(s)
- Xiangmin Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haojing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - He Hong
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yongchao Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chen Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Guangkai Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
5
|
Li S, Wang G, Zhang Y, Zhao W, Yang H, Yin X, Li Y. Discovery of Novel Isoxazoline Derivatives Containing Pyrazolamide Fragment as Insecticidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6580-6588. [PMID: 40053670 DOI: 10.1021/acs.jafc.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Lepidopteran species cause significant harm to agricultural yields and food quality. In this study, a series of innovative isoxazoline derivatives incorporating pyrazolamide moieties were carefully designed and synthesized as potential insecticidal agents. Among these, compound F16 demonstrated an LC50 value of 0.01 mg/L against Plutella xylostella, surpassing that of the lead compound fluxametamide (LC50 = 0.15 mg/L). Furthermore, F16 exhibited broad-spectrum insecticidal activity against Pyrausta nubilalis, Spodoptera frugiperda, Chilo suppressalis, Aphis craccivora, and Sogatella furcifera. Notably, F16 possessed low toxicity against Danio rerio, whereas fluxametamide displayed moderate toxicity. Furthermore, molecular docking analysis demonstrated that the potent insecticidal activity of F16 is likely mediated by its specific interactions with γ-GABA receptors primarily through the formation of hydrogen bonds with key residues. Density functional theory calculations and molecular electrostatic potentials were also performed to gain insights into the insecticidal behavior of F16. These findings suggest that F16 is a promising candidate for further investigation as a novel pesticide.
Collapse
Affiliation(s)
- Shaochen Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guangpeng Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yanyang Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenli Zhao
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huiying Yang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xue Yin
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Ma X, Sun P, Wang J, Huang X, Wu J. Pyridazine and pyridazinone compounds in crops protection: a review. Mol Divers 2024:10.1007/s11030-024-11083-5. [PMID: 39724455 DOI: 10.1007/s11030-024-11083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Pyridazine and pyridazinone belong to the same group of six-membered heterocyclic compounds, and both structurally feature two adjacent nitrogen atoms. Pyridazine and pyridazinone derivatives are frequently used as core structures in the development of new green agrochemicals due to their high activity and environmental friendliness, attracting significant attention from researchers in recent years. Over the past 20 years, significant developments have occurred in the field of pyridazine and pyridazinone derivatives, which exhibit insecticidal, fungicidal, herbicidal, antiviral, and plant growth regulating activities. Hence, summarizing the process of creating novel molecules with pyridazine and pyridazinone structures through design concepts, understanding structure-activity relationships, and mechanisms of action is an important undertaking. This review aims to provide a comprehensive overview of these advancements, shedding light on the discovery and mechanism of action of novel pesticides in the pyridazine and pyridazinone categories.
Collapse
Affiliation(s)
- Xining Ma
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ping Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jiaxin Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xinyu Huang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Ru Y, Fu W, Guo S, Li X, Zhou C, Xu Z, Cheng J, Li Z, Shao X. Discovery of Novel Nicotinamide Derivatives by a Two-Step Strategy of Azo-Incorporating and Bioisosteric Replacement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20794-20804. [PMID: 39276343 DOI: 10.1021/acs.jafc.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Azobenzene moieties can serve as active fragments in antimicrobials and exert trans/cis conversions of molecules. Herein, a series of novel nicotinamide derivatives (NTMs) were developed by employing a two-step strategy, including azo-incorporating and bioisosteric replacement. Azo-incorporation can conveniently provide compounds that can be easily optically interconverted between trans/cis isomers, enhancing the structural diversity of azo compounds. It is noteworthy that the replacement of the azo bond with a 1,2,4-oxadiazole motif through further bioisosteric replacement led to the discovery of a novel compound, NTM18, which made a breakthrough in preventing rice sheath blight disease. A control effect value of 94.44% against Rhizoctonia solani could be observed on NTM18, while only 11.11% was determined for boscalid at 200 mg·L-1. Further mechanism validations were conducted, and the molecular docking analysis demonstrated that compound NTM18 might have a tight binding with SDH via an extra π-π interaction between the oxadiazole ring and residue of D_Y586. This work sets up a typical case for the united applications of azo-incorporating and bioisosteric replacement in fungicide design, posing an innovative approach in structural diversity-based development of pesticides.
Collapse
Affiliation(s)
- Yifan Ru
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, Guizhou China
| | - Sifan Guo
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Li
- College of Humanities and Economic Management, Yantai Institute of China Agricultural University, Yantai 264670, Shandong China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Tang J, Qu C, Zhan Q, Zhang D, Wang J, Luo C, Wang R. Baseline of susceptibility, risk assessment, biochemical mechanism, and fitness cost of resistance to dimpropyridaz, a novel pyridazine pyrazolecarboxamide insecticide, in Bemisia tabaci from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105987. [PMID: 39084790 DOI: 10.1016/j.pestbp.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
Bemisia tabaci is one of the most destructive agricultural insect pests around the world, and it has developed high levels of resistance to most pesticides. Dimpropyridaz, a novel insecticide developed by BASF, displays excellent activity against piercing-sucking insect pests. In this study, baseline of susceptibility showed all tested field populations of B. tabaci are susceptible to dimpropyridaz. After continuous selection with dimpropyridaz in the lab, a B. tabaci strain (F12) developed 2.2-fold higher level of resistance compared with a susceptible MED-S strain, and the realized heritability (h2) was estimated as 0.0518. The F12 strain displayed little cross-resistance to afidopyropen, cyantraniliprole, sulfoxaflor, or abamectin, and significantly increased activity of cytochrome P450 monooxygenase (P450). The fitness cost of dimpropyridaz resistance was evident in F12 strain, which had a relative fitness of 0.95 and significantly lower fecundity per female compared with MED-S strain. Taken together, B. tabaci displays high susceptibility to dimpropyridaz in the field, and low risk of developing resistance to dimpropyridaz under successive selection pressure. Little cross-resistance to popular insecticides was found, and fitness cost associated dimpropyridaz resistance was observed. Higher activity of cytochrome P450 in the F12 strain, may be involved in the process of detoxifying dimpropyridaz in whitefly.
Collapse
Affiliation(s)
- Juan Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qianyuan Zhan
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Daofeng Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Jinda Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
9
|
Chen C, Lei Q, Geng W, Wang D, Gan X. Discovery of Novel Pyridazine Herbicides Targeting Phytoene Desaturase with Scaffold Hopping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12425-12433. [PMID: 38781442 DOI: 10.1021/acs.jafc.3c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Phytoene desaturase (PDS) is a critical functional enzyme in blocking ζ-carotene biosynthesis and is one of the bleaching herbicide targets. At present, norflurazon (NRF) is the only commercial pyridazine herbicide targeting PDS. Therefore, developing new and diverse pyridazine herbicides targeting PDS is urgently required. In this study, diflufenican (BF) was used as the lead compound, and a scaffold-hopping strategy was employed to design and synthesize some pyridazine derivatives based on the action mode of BF and PDS. The preemergence herbicidal activity tests revealed that compound 6-chloro-N-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenoxy)pyridazine-4-carboxamide (B1) with 2,4-diF substitution in the benzeneamino ring showed 100% inhibition rates against the roots and stems of Echinochloa crus-galli and Portulaca oleracea at 100 μg/mL, superior to the inhibition rates of BF. Meanwhile, compound B1 demonstrated excellent postemergence herbicidal activity against broadleaf weeds, which was similar to that of BF (inhibition rate of 100%) but superior to that of NRF. This indicated that 6-Cl in the pyridazine ring is the key group for postemergence herbicidal activity. In addition, compound B1 could induce downregulation of PDS gene expression, 15-cis-phytoene accumulation, and Y(II) deficiency and prevent photosynthesis. Therefore, B1 can be considered as a promising candidate for developing high-efficiency PDS inhibitors.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, PR China
| | - Qiong Lei
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Daoping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
10
|
Tang J, Zhang Q, Qu C, Su Q, Luo C, Wang R. Knockdown of one cytochrome P450 gene CYP6DW4 increases the susceptibility of Bemisia tabaci to dimpropyridaz, a novel pyridazine pyrazolecarboxamide insecticide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105888. [PMID: 38685219 DOI: 10.1016/j.pestbp.2024.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 05/02/2024]
Abstract
Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.
Collapse
Affiliation(s)
- Juan Tang
- College of Agriculture, Yangtze University, Jingzhou 434000, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qinghe Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qi Su
- College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
11
|
Luo B, Wu Y, Ren X, Li H, Li X, Wang G, Wang M, Dong L, Liu M, Zhou W, Qu L. Novel Pyrazole-4-Carboxamide Derivatives Containing Oxime Ether Group as Potential SDHIs to Control Rhizoctonia solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9599-9610. [PMID: 38646697 DOI: 10.1021/acs.jafc.3c06811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 μg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 μg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 μg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 μg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 μM), which was obviously more potent than those of boscalid (IC50 = 7.92 μM) and fluxapyroxad (IC50 = 6.15 μM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuerui Wu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Xinran Ren
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Huimin Li
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Xuanru Li
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Gege Wang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Mengjia Wang
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Luqi Dong
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Mengxing Liu
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Wei Zhou
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Lailiang Qu
- College of Medicine, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
12
|
Gao YC, Song X, Jia T, Zhao C, Yao G, Xu H. Discovery of new N-Phenylamide Isoxazoline derivatives with high insecticidal activity and reduced honeybee toxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105843. [PMID: 38582603 DOI: 10.1016/j.pestbp.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 04/08/2024]
Abstract
Isoxazoline is a novel structure with strong potential for controlling agricultural insect pests, but its high toxicity to honeybees limits its development in agriculture. Herein, a series of N-phenylamide isoxazoline derivatives with low honeybee toxicity were designed and synthesized using the intermediate derivatization method. Bioassay results showed that these compounds exhibited good insecticidal activity. Compounds 3b and 3f showed significant insecticidal effects against Plutella xylostella (P. xylostella) with median lethal concentrations (LC50) of 0.06 and 0.07 mg/L, respectively, comparable to that of fluralaner (LC50 = 0.02 mg/L) and exceeding that of commercial insecticide fluxametamide (LC50 = 0.52 mg/L). It is noteworthy that the acute honeybee toxicities of compounds 3b and 3f (LD50 = 1.43 and 1.63 μg/adult, respectively) were significantly reduced to 1/10 of that of fluralaner (LD50 = 0.14 μg/adult), and were adequate or lower than that of fluxametamide (LD50 = 1.14 μg/adult). Theoretical simulation using molecular docking indicates that compound 3b has similar binding modes with fluralaner and a similar optimal docking pose with fluxametamide when binding to the GABA receptor, which may contribute to its potent insecticidal activity and relatively low toxicity to honey bees. This study provides compounds 3b and 3f as potential new insecticide candidates and provides insights into the development of new isoxazoline insecticides exhibiting both high efficacy and environmental safety.
Collapse
Affiliation(s)
- Yong-Chao Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xiangmin Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Tianhao Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
13
|
Wei J, Chai Y, Zhou J, Pan Y, Jia T, Xiong L, Yao G, Zhang Z, Xu H, Zhao C. Discovery of Arylfluorosulfates as Novel Fungicidal Agents against Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3456-3468. [PMID: 38331710 DOI: 10.1021/acs.jafc.3c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A series of arylfluorosulfates were synthesized as fungicide candidates through a highly efficient sulfur fluoride exchange (SuFEx) reaction. A total of 32 arylfluorosulfate derivatives with simple structures have been synthesized, and most of them exhibited fungal activities in vitro against five agricultural pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Pyricularia oryzae, and Phytophthora infestans). Among the target compounds, compound 31 exhibited great antifungal activity against Rhizoctonia solani (EC50 = 1.51 μg/mL), which was comparable to commercial fungicides carbendazim and thiabendazole (EC50 = 0.53 and 0.70 μg/mL, respectively); compounds 17 and 30 exhibited antifungal activities against Pyricularia oryzae (EC50 = 1.64 and 1.73 μg/mL, respectively) comparable to carbendazim (EC50 = 1.02 μg/mL). The in vitro antifungal effect of compound 31 was also evaluated on rice plants against Rhizoctonia solani. Significant preventive and curative efficacies were observed (89.2% and 91.8%, respectively, at 200 μg/mL), exceeding that of thiabendazole. Primary study on the mechanism of action indicated that compound 31 could suppress the sclerotia formation of Rhizoctonia solani even at a very low concentration (1.00 μg/mL), destroy the cell membrane and mitochondria, trigger the release of cellular contents, produce excessive reactive oxygen species (ROS), and suppress the activity of several related enzymes. This work could bring new insights into the development of arylfluorosulfates as novel fungicides.
Collapse
Affiliation(s)
- Junjie Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yunlong Chai
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiarun Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaxin Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Tianhao Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lantu Xiong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|