1
|
Luo J, Ouyang H, Wu H, Xiong F, Yang T, Li H, Li X. UDP-glycosyltransferases-mediated vitellogenin protein biogenesis reveals juvenile hormone I-specific dominance in Spodoptera frugiperda reproductive programming. Int J Biol Macromol 2025; 313:144215. [PMID: 40373930 DOI: 10.1016/j.ijbiomac.2025.144215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Juvenile hormone (JH) critically regulates reproduction in Spodoptera frugiperda (FAW) via its signaling cascade. We dissected isoform-specific roles of JH I, II, and III by using hormone injection, RNAi, and RNA-seq. Systematic modulation of JH variants revealed distinct roles in ovarian development, egg production, and vitellogenin (Vg) dynamics. Transcriptomic profiling identified JH I as the most potent inducer of reproductive pathways, specifically enriching the steroid hormone biosynthesis pathway. Within this pathway, two UDP-glycosyltransferases (UGT), SfUGT2 and SfUGT2-like, were identified as key regulators of Vg synthesis through RNAi knockdown and functional validation (qPCR, Western blot). Silencing either gene reduced Vg levels and impaired ovarian maturation. JH I exhibited the strongest induction of SfUGT2/SfUGT2-like expression, correlating with its superior reproductive activation. Notably, JH III synergistically amplified JH I/II-induced Vg accumulation and egg production, as evidenced by co-treatment assays. This cooperative interplay highlights a tiered regulatory network among JH isoforms, and provide novel insights into the endocrine regulation of reproduction in FAW, also highlight the potential for targeted manipulation of JH signaling for pest control strategies.
Collapse
Affiliation(s)
- Jie Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huili Ouyang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Haiyan Wu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Faqian Xiong
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Taiyi Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Honghong Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Raza MF, Li W. Biogenic amines in honey bee cognition: neurochemical pathways and stress impacts. CURRENT OPINION IN INSECT SCIENCE 2025; 70:101376. [PMID: 40306360 DOI: 10.1016/j.cois.2025.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/27/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Honey bees, as indispensable pollinators, rely on sophisticated neuromodulatory networks to regulate learning, memory, and social behaviors, all essential for colony function, ecosystem stability, and global agricultural systems. Biogenic amines octopamine, dopamine, serotonin, and tyramine are key modulators of these cognitive and behavioral processes, regulating foraging efficiency, navigational precision, and division of labor. However, we argue that anthropogenic stressors, including pesticides, pollutants, heavy metals, and microbiome dysbiosis, disrupt aminergic pathways by impairing neurotransmitter synthesis and neuronal signaling, leading to maladaptive behaviors and colony collapse. Recent discoveries expand this paradigm, revealing those biogenic amines in floral nectar act as exogenous neurochemicals, potentially altering pollinator behavior; however, their interaction with agrochemicals remains underexplored. While most studies focus on Apis mellifera, we caution that cautious extrapolation to wild and solitary bees is critical, given the evolutionary conservation of aminergic signaling across insect taxa. Cognitive deficits observed in managed honeybees likely extend to wild pollinators, threatening pollination network resilience and food security. To address these gaps, we advocate for CRISPR-based neurogenetic tools and multi-omics approaches to dissect stress susceptibility and biogenic amine (BA) regulation. Integrating neurobiology, ecotoxicology, and conservation science is imperative to develop precision strategies that mitigate anthropogenic threats, safeguard biodiversity, and stabilize global agriculture.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Wenfeng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
3
|
Li X, Zhang F, Zheng L, Guo J. Advancing ecotoxicity assessment: Leveraging pre-trained model for bee toxicity and compound degradability prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134828. [PMID: 38876015 DOI: 10.1016/j.jhazmat.2024.134828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The prediction of ecological toxicity plays an increasingly important role in modern society. However, the existing models often suffer from poor performance and limited predictive capabilities. In this study, we propose a novel approach for ecological toxicity assessment based on pre-trained models. By leveraging pre-training techniques and graph neural network models, we establish a highperformance predictive model. Furthermore, we incorporate a variational autoencoder to optimize the model, enabling simultaneous discrimination of toxicity to bees and molecular degradability. Additionally, despite the low similarity between the endogenous hormones in bees and the compounds in our dataset, our model confidently predicts that these hormones are non-toxic to bees, which further strengthens the credibility and accuracy of our model. We also discovered the negative correlation between the degradation and bee toxicity of compounds. In summary, this study presents an ecological toxicity assessment model with outstanding performance. The proposed model accurately predicts the toxicity of chemicals to bees and their degradability capabilities, offering valuable technical support to relevant fields.
Collapse
Affiliation(s)
- Xinkang Li
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangzhen Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Zelixir Biotech Company Ltd. Shanghai, China.
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao.
| |
Collapse
|
4
|
Hou J, Guo X, Li H, Zhang W, Zhang Y, Zhang F, Li H, Wei J, Li X. Precise Regulation of Juvenile Hormone III R-Stereoisomer Synthesis by Apis mellifera through Specifically Binding Methyl-(2 E,6 E)-farnesoate and Strictly Controlling Its Titer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20155-20166. [PMID: 38051952 DOI: 10.1021/acs.jafc.3c05385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Juvenile hormone III (JH III) is a crucial hormone synthesized exclusively as R-stereoisomer in most insects. Herein, we established a mature Tris-HCl culture system for essential biochemical reactions and applied stable instrumental detection methods to analyze JH III, methyl farnesoate (MF) and juvenile hormone acid (JHA) using UPLC-MS/MS. Our results revealed that the R-JH III terminal synthesis pathway in Apis mellifera follows the "esterify then epoxidize" sequence, with precise methyl-(2E,6E)-farnesoate titer regulation and its spatial cis-trans isomerism, achieving selective R-JH III synthesis. Furthermore, we observed that the preferred generation of S/R-JH III chiral enantiomers varied depending on the spatial cis-trans isomerism of different MFs. Our results suggest that S-JH III could theoretically exist in insects, offering a novel perspective for understanding the synthesis mechanism of diverse complex juvenile hormones in different insect species.
Collapse
Affiliation(s)
- Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaxia Guo
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Fu Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
5
|
Zhang F, Cao W, Zhang Y, Luo J, Hou J, Chen L, Yi G, Li H, Huang M, Dong L, Li X. S-dinotefuran affects the social behavior of honeybees (Apis mellifera)and increases their risk in the colony. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105594. [PMID: 37945244 DOI: 10.1016/j.pestbp.2023.105594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
The toxic effects of neonicotinoid pesticides on honeybees is a global concern, whereas little is known about the effect of stereoisomeric pesticides among honeybee social behavior. In this study, we investigated the effects of stereoisomeric dinotefuran on honeybee social behavior. We found that honeybees exhibit a preference for consuming food containing S-dinotefuran, actively engage in trophallaxis with S-dinotefuran-consuming peers, and consequently acquire higher levels of S-dinotefuran compared with R-dinotefuran. In comparison to R-dinotefuran, S-dinotefuran stimulates honeybees to elevate their body temperature, thereby attracting more peers for trophallaxis. Transcriptome analysis revealed a significant enrichment of thermogenesis pathways due to S-dinotefuran exposure. Additionally, metabolome data indicated that S-dinotefuran may enhance body temperature by promoting lipid synthesis in the lysine degradation pathway. Consequently, body temperature emerges as a key factor influencing honeybee social behavior. Our study is the first to highlight the propensity of S-dinotefuran to raise honeybee body temperature, which prompts honeybee to preferentially engage in trophallaxis with peers exhibiting higher body temperatures. This preference may lead honeybees to collect more dinotefuran-contaminated food in the wild, significantly accelerating dinotefuran transmission within a population. Proactive trophallaxis further amplifies the risk of neonicotinoid pesticide transmission within a population, making honeybees that have consumed S-dinotefuran particularly favored within their colonies. These findings may contribute to our understanding of the higher risk associated with neonicotinoid use compared with other pesticides.
Collapse
Affiliation(s)
- Fu Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjing Cao
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Jie Luo
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Lichao Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Guoqiang Yi
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Mingfeng Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Linxi Dong
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Yi G, Ba R, Luo J, Zou L, Huang M, Li Y, Li H, Li X. Simultaneous Detection and Distribution of Five Juvenile Hormones in 58 Insect Species and the Absolute Configuration in 32 Insect Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7878-7890. [PMID: 37191197 DOI: 10.1021/acs.jafc.3c01168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Juvenile hormone (JH) plays an important role in regulating various insect physiological processes. Herein, a novel method (chiral and achiral) for the simultaneous detection of five JHs was established by processing a whole insect without complicated hemolymph extraction. The proposed method was used to determine the distribution of JHs in 58 insect species and the absolute configuration of JHs in 32 species. The results showed that JHSB3 was uniquely synthesized in Hemiptera, JHB3 was unique to Diptera, and JH I and JH II were unique to Lepidoptera. JH III was present in most insect species surveyed, with social insects having generally higher JH III titers. Interestingly, JHSB3 and JHB3, both double epoxidation JHs, were found in insects with sucking mouthparts. The absolute conformation of JH III and the 10C of the detected JHs were all R stereoisomers.
Collapse
Affiliation(s)
- Guoqiang Yi
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Rikang Ba
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Luo
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Lixia Zou
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Mingfeng Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuxuan Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|