1
|
Wu Y, Wang Q, Zabed HM, Zhao M, Qi X. Biosensor-Assisted Evolution of a β-Glucosidase for Enzymatic Robustness and In Vivo Cellobiose Metabolism in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40340364 DOI: 10.1021/acs.jafc.5c02856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
β-Glucosidase is one of the essential components of the enzyme cocktail required for the degradation of lignocellulose, which catalyzes the conversion of cellobiose into glucose both in vitro and in vivo. For the in vivo utilization of cellobiose in Escherichia coli, it is crucial to express and regulate a BGL optimally with enhanced enzymatic properties. This study characterizes the enzymatic properties of a BGL named AtBgl1, derived from Alteromonadales bacterium TW-7. A cellobiose biosensor, Cbio3-R-R3, was constructed and optimized, showing a 2.27-fold increase in sensitivity compared to Cbio1. A mutant library was constructed through two rounds of error-prone mutagenesis. Using cellobiose-based screening plates and a biosensor, we identified the BGL mutant strain M5, which showed a 2.13-fold increase in kcat/Km compared to AtBgl1. Structural analysis and molecular dynamics simulations provided insights into the molecular mechanisms underlying this enhanced performance. Finally, E. coli was given the ability to metabolize cellobiose, and the E. coli BL21-M5 showed remarkable improvements in metabolic efficiency, achieving an 88.4% cellobiose utilization rate within 48 h. This study provides valuable strategies and insights for the biosensor-assisted directed evolution of BGL, enhancing its enzymatic robustness and facilitating in vivo cellobiose metabolism in E. coli metabolic engineering.
Collapse
Affiliation(s)
- Yunfei Wu
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Qiang Wang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, Guangdong 510006, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Li M, Zhang Y, Zhang T, Miao M. Enhanced thermostability and catalytic activity for arginine deiminase from Enterobacter faecalis SK32.001 via combinatorial mutagenesis. Int J Biol Macromol 2025; 284:138004. [PMID: 39586434 DOI: 10.1016/j.ijbiomac.2024.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Arginine deiminase (ADI) exhibits potential for clinical and industrial applications, yet its low thermostability and catalytic efficiency under physiological conditions limit its utility. In this work, the ADI of Enterococcus faecalis SK32.001 was rationally designed. A total of 120 combinatorial mutants, ranging from two-point to six-point mutations, were constructed by sequentially stacking single-point positive mutants (F44W, N163P, E220L, N318E, A336G, T340I). Among them, the mutants S604, S700, S601, and S606 exhibited higher Tm values, while the mutants S605, S547, S602, S607, S517, and S557 demonstrated enhanced enzymatic activity. Notably, the five-point mutant S547 (F44W/N163P/E220I/A336G/T340I) exhibited remarkable pH tolerance (pH 4.5-9.5, with over 80 % residual enzyme activity). Its specific enzyme activity reached 131.60 U/mg, which was 2-fold higher than that of wild enzyme. The Tm value of this enzyme increases to 64.04 °C, 11.62 °C higher than that of the wild-type enzyme. The structure predicted by AlphaFold 2 revealed that the increased rigidity, formation of new hydrogen bonds, and an increase in hydrophobic residues may account for the enhanced enzyme activity and thermostability. This research demonstrates that rational design strategies can effectively optimize enzyme properties, providing insights for the development of microbial enzymes with industrial relevance.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yijing Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Szleper K, Cebula M, Kovalenko O, Góra A, Raczyńska A. PUR-GEN: A web server for automated generation of polyurethane fragment libraries. Comput Struct Biotechnol J 2024; 27:127-136. [PMID: 39845943 PMCID: PMC11750484 DOI: 10.1016/j.csbj.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental. To facilitate in silico research, we introduce PUR-GEN, a web server tailored for the automated generation of PUR fragment libraries. PUR-GEN allows users to input isocyanate and alcohol structural units, facilitating the creation of combinatorial oligomer libraries enriched with conformers and compound property tables. PUR-GEN can serve as a valuable tool for designing PUR fragments to mimic PUR structure interactions with proteins, as well as characterising simplistic PUR models. To illustrate an application of the web server, we present a case study on selected four cutinases and three urethanases with experimentally confirmed PUR-degrading activity or ability to hydrolyse carbamates. The use of PUR-GEN in molecular docking of 414 generated oligomers provides an example of the pipeline for initiation of the PUR degrading enzymes discovery.
Collapse
Affiliation(s)
- Katarzyna Szleper
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
| | - Mateusz Cebula
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Oksana Kovalenko
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
| | - Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, Toulouse F-31077 Cedex 04, France
| |
Collapse
|
4
|
Zhang Y, Zhang T, Miao M. Semi-rational design in simultaneous improvement of thermostability and activity of β-1,3-glucanase from Alkalihalobacillus clausii KSMK16. Int J Biol Macromol 2024; 283:137779. [PMID: 39557250 DOI: 10.1016/j.ijbiomac.2024.137779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Endo-β-1,3-glucanase (β-1,3-GA) is a key enzyme capable of acting on the β-1,3-glycosidic bond of β-1,3-glucan, resulting in the production of β-1,3-gluco-oligosaccharides with higher water solubility. Higher temperatures are beneficial for curdlan hydrolysis; however, low enzymatic activity and thermal stability limit their applicability. In this study, a mutant library of Endo-β-1,3-glucanase (AC-GA) derived from Alkalihalobacillus clausii KSM-K16 was constructed by a semi-rational design using amino-acid-based multiple sequence alignment and protein structure-based computer-aided engineering. The best combination mutant (S52T/M120L) was screened through ordered recombination mutations, which showed a 24.88 % increase in specific enzyme activity over the wild-type. The melting temperature (Tm) value, an enzyme protein denaturation temperature, was raised to 82.99 °C from 78.60 of the wild type. In comparison, the Km for hydrolysis of curdlan by S52T/M120L was reduced by 12.1 %, while the kcat was increased by 59.39 %, thus leading to a higher catalytic efficiency (kcat/Km, 227.73 vs 125.46 mL·s-1·mg-1). Molecular dynamics (MD) simulations showed that mutations resulted in a reduction in the overall flexibility of the enzyme, an increase in rigidity, and a more stable structure. An increase in the hydrophobic network at the entrance of the substrate increases the accessibility of the substrate to the enzyme, resulting in increased enzyme activity. High-efficiency mutants have potential industrial applications in the enzymatic preparation of β-1,3-gluco-oligosaccharides.
Collapse
Affiliation(s)
- Yiling Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Xu J, Ye S, Guan F. A computational strategy to improve the activity of tyrosine phenol-lyase for the synthesis of L-DOPA. Sci Rep 2024; 14:25329. [PMID: 39455666 PMCID: PMC11512013 DOI: 10.1038/s41598-024-76111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Enzymes with high catalytic activity and stability are essential for industrial production, yet most natural enzymes do not meet these requirements. Therefore, efficient strategies for enzyme engineering are crucial. In this study, we developed a cost-effective computational design strategy to enhance the activity of tyrosine phenol-lyase (TPL) for the production of L-DOPA. By integrating structural analysis with computational design, and guided by our understanding of conformational flexibility of TPL, we identified a region where enhanced stability is most likely to facilitate enzyme activity. We screened stabilizing mutations by Cartesian_ddg in Rosetta. After identifying single stabilizing mutations, we grouped the nearby positions harboring multiple stabilizing mutations and calculated the energy of combinatorial variants. We found two promising groups where most variants exhibited lower calculated energy than the wild-type. Experimental validation showed five variants in these groups exhibit increased activity, with the two best variants showing catalytic activity enhancements of 1.8-fold and 1.6-fold compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Jiayu Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Fenghui Guan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310000, China.
| |
Collapse
|
6
|
Yang L, Zhao T, Zhang X, Fan T, Zhang Y, Feng Z, Liu J. Crystal structure of urethanase from Candida parapsilosis and insights into the substrate-binding through in silico mutagenesis and improves the catalytic activity and stability. Int J Biol Macromol 2024; 278:134763. [PMID: 39151849 DOI: 10.1016/j.ijbiomac.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Ethyl carbamate (EC) is classified as a Class 2A carcinogen, and is present in various fermented foods, posing a threat to human health. Urethanase (EC 3.5.1.75) can catalyze EC to produce ethanol, CO2 and NH3. The urethanase (cpUH) from Candida parapsilosis can hydrolyze EC, but its low affinity and poor stability hinder its application. Here, the structure of cpUH from Candida parapsilosis was determined with a resolution of 2.66 Å. Through sequence alignment and site-directed mutagenesis, it was confirmed that cpUH contained the catalytic triad Ser-cisSer-Lys of the amidase family. Then, the structure-oriented engineering mutant N194V of urethanase was obtained. Its urethanase activity increased by 6.12 %, the catalytic efficiency (kcat/Km) increased by 21.04 %, and the enzyme stability was also enhanced. Modeling and molecular docking analysis showed that the variant N194V changed the number of hydrogen bonds between the substrate and the catalytic residue, resulting in enhanced catalytic ability. MD simulation also demonstrated that the introduction of hydrophobic amino acid Val reduced the RMSD value and increased protein stability. The findings of this study suggest that the N194V variant exhibits significant potential for industrial applications due to its enhanced affinity for substrate binding, improved catalytic efficiency, and increased enzyme stability.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Ting Zhao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Jun Liu
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
7
|
Xu Z, Xu J, Zhang T, Wang Z, Wu J, Yang L. Sequence-Guided Redesign of an Omega-Transaminase from Bacillus megaterium for the Asymmetric Synthesis of Chiral Amines. Chembiochem 2024; 25:e202400285. [PMID: 38752893 DOI: 10.1002/cbic.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
ω-Transaminases (ω-TAs) are attractive biocatalysts asymmetrically catalyzing ketones to chiral amines. However, poor non-native catalytic activity and substrate promiscuity severely hamper its wide application in industrial production. Protein engineering efforts have generally focused on reshaping the substrate-binding pockets of ω-TAs. However, hotspots around the substrate tunnel as well as distant sites outside the pockets may also affect its activity. In this study, the ω-TA from Bacillus megaterium (BmeTA) was selected for engineering. The tunnel mutation Y164F synergy with distant mutation A245T which was acquired through a multiple sequence alignment showed improved soluble expression, a 3.7-fold higher specific activity and a 19.9-fold longer half-life at 45 °C. Molecule Dynamics simulation explains the mechanism of improved catalytic activity, enhanced thermostability and improved soluble expression of BmeTAY164F/A245T(2 M). Finally, the resting cells of 2 M were used for biocatalytic processes. 450 mM of S-methoxyisopropylamine (S-MOIPA) was obtained with an ee value of 97.3 % and a conversion rate of 90 %, laying the foundation for its industrial production. Mutant 2 M was also found to be more advantageous in catalyzing the transamination of various ketones. These results demonstrated that sites that are far away from the active center also play an important role in the redesign of ω-TAs.
Collapse
Affiliation(s)
- Zhexian Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Tao Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyuan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Zhang X, Zhang Y, Fan T, Feng Z, Yang L. Structure-guided engineered urethanase from Candida parapsilosis with pH and ethanol tolerance to efficiently degrade ethyl carbamate in Chinese rice wine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116335. [PMID: 38626603 DOI: 10.1016/j.ecoenv.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Urethane hydrolase can degrade the carcinogen ethyl carbamate (EC) in fermented food, but its stability and activity limit its application. In this study, a mutant G246A and a double mutant N194V/G246A with improved cpUH activity and stability of Candida parapsilosis were obtained by site-directed mutagenesis. The catalytic efficiency (Kcat/Km) of mutant G246A and double mutant N194V/G246A are 1.95 times and 1.88 times higher than that of WT, respectively. In addition, compared with WT, the thermal stability and pH stability of mutant G246A and double mutant N194V/G246A were enhanced. The ability of mutant G246A and double mutant N194V/G246A to degrade EC in rice wine was also stronger than that of WT. The mutation increased the stability of the enzyme, as evidenced by decreased root mean square deviation (RMSD) and increased hydrogen bonds between the enzyme and substrate by molecular dynamics simulation and molecular docking analysis. The molecule modification of new cpUH promotes the industrial process of EC degradation.
Collapse
Affiliation(s)
- Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
9
|
Ma B, Niu J, Zhu H, Chi H, Lu Z, Lu F, Zhu P. Engineering substrate specificity of quinone-dependent dehydrogenases for efficient oxidation of deoxynivalenol to 3-keto-deoxynivalenol. Int J Biol Macromol 2024; 264:130484. [PMID: 38431002 DOI: 10.1016/j.ijbiomac.2024.130484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The oxidative reaction of Fusarium mycotoxin deoxynivalenol (DON) using the dehydrogenase is a desirable strategy and environmentally friendly to mitigate its toxicity. However, a critical issue for these dehydrogenases shows widespread substrate promiscuity. In this study, we conducted pocket reshaping of Devosia strain A6-243 pyrroloquinoline quinone (PQQ)-dependent dehydrogenase (DADH) on the basis of protein structure and kinetic analysis of substrate libraries to improve preference for particular substrate DON (10a). The variant presented an increased preference for substrate 10a and enhanced catalytic efficiency. A 4.7-fold increase in preference for substrate 10a was observed. Kinetic profiling and molecular dynamics (MD) simulations provided insights into the enhanced substrate specificity and activity. Moreover, the variant exhibited stronger conversion of substrate 10a to 3-keto-DON compared to the wild DADH. Overall, this study provides a feasible protocol for the redesign of PQQ-dependent dehydrogenases with favourable substrate specificity and catalytic activity, which is desperately needed for DON antidote development.
Collapse
Affiliation(s)
- Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Zhao Y, Chen K, Yang H, Wang Y, Liao X. Semirational Design Based on Consensus Sequences to Balance the Enzyme Activity-Stability Trade-Off. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6454-6462. [PMID: 38477968 DOI: 10.1021/acs.jafc.3c08620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In this study, the phenomenon of the stability-activity trade-off, which is increasingly recognized in enzyme engineering, was explored. Typically, enhanced stability in enzymes correlates with diminished activity. Utilizing Rosa roxburghii copper-zinc superoxide dismutase (RrCuZnSOD) as a model, single-site mutations were introduced based on a semirational design derived from consensus sequences. The initial set of mutants was selected based on activity, followed by combinatorial mutation. This approach yielded two double-site mutants, D25/A115T (18,688 ± 206 U/mg) and A115T/S135P (18,095 ± 1556 U/mg), exhibiting superior enzymatic properties due to additive and synergistic effects. These mutants demonstrated increased half-lives (T1/2) at 80 °C by 1.2- and 1.6-fold, respectively, and their melting temperatures (Tm) rose by 3.4 and 2.5 °C, respectively, without any loss in activity relative to the wild type. Via an integration of structural analysis and molecular dynamics simulations, we elucidated the underlying mechanism facilitating the concurrent enhancement of both thermostability and enzymatic activity.
Collapse
Affiliation(s)
- Yang Zhao
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Sichuan Advanced Agricultural and Industrial Institute, China Agricultural University, Chengdu 611400, China
| | - Kun Chen
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haixia Yang
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongtao Wang
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Okabe T, Aoi R, Yokota A, Tamiya-Ishitsuka H, Jiang Y, Sasaki A, Tsuneda S, Noda N. Arg-73 of the RNA endonuclease MazF in Salmonella enterica subsp. arizonae contributes to guanine and uracil recognition in the cleavage sequence. J Biol Chem 2024; 300:105636. [PMID: 38199572 PMCID: PMC10864209 DOI: 10.1016/j.jbc.2024.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The sequence-specific endoribonuclease MazF is widely conserved among prokaryotes. Approximately 20 different MazF cleavage sequences have been discovered, varying from three to seven nucleotides in length. Although MazFs from various prokaryotes were found, the cleavage sequences of most MazFs are unknown. Here, we characterized the conserved MazF of Salmonella enterica subsp. arizonae (MazF-SEA). Using massive parallel sequencing and fluorometric assays, we revealed that MazF-SEA preferentially cleaves the sequences U∧ACG and U∧ACU (∧ represents cleavage sites). In addition, we predicted the 3D structure of MazF-SEA using AlphaFold2 and aligned it with the crystal structure of RNA-bound Bacillus subtilis MazF to evaluate RNA interactions. We found Arg-73 of MazF-SEA interacts with RNAs containing G and U at the third position from the cleavage sites (U∧ACG and U∧ACU). We then obtained the mutated MazF-SEA R73L protein to evaluate the significance of Arg-73 interaction with RNAs containing G and U at this position. We also used fluorometric and kinetic assays and showed the enzymatic activity of MazF-SEA R73L for the sequence UACG and UACU was significantly decreased. These results suggest Arg-73 is essential for recognizing G and U at the third position from the cleavage sites. This is the first study to our knowledge to identify a single residue responsible for RNA recognition by MazF. Owing to its high specificity and ribosome-independence, MazF is useful for RNA cleavage in vitro. These results will likely contribute to increasing the diversity of MazF specificity and to furthering the application of MazF in RNA engineering.
Collapse
Affiliation(s)
- Takuma Okabe
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Rie Aoi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hiroko Tamiya-Ishitsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yunong Jiang
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akira Sasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; School of Integrative and Global Majors, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
12
|
Li M, Zhang T, Li C, Gao W, Liu Z, Miao M. Semi-rationally designed site-saturation mutation of Helicobacter pylori α-1,2-fucosyltransferase for improved catalytic activity and thermostability. Int J Biol Macromol 2024; 259:129316. [PMID: 38218286 DOI: 10.1016/j.ijbiomac.2024.129316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Helicobacter pylori HpfutC, a glycosyltransferase (GT) 11 family glycoprotein, has great potential for industrial 2'-fucosyllactose (2'-FL) production. However, its limited catalytic activity, low expression, and poor thermostability hinder practical applications. Herein, a semi-rationally designed site-saturation mutation was applied to engineer the catalytic activity and thermostability of HpfutC. The 6 single point mutants (K102T, R105C, D115S, Y251F, A255G and K282E) and 6 combined mutants (V1, V2, V3, V4, V5, and V6) with enhanced enzyme activity were obtained by mutant library screening and ordered recombination mutation. The optimal mutant V6, with an optimum temperature of 40 °C, was not a metal-dependent enzyme, yet the reaction was facilitated by Mn2+. Compared to wild-type HpfutC, mutant V6 exhibited a 2.3-fold increase in specific activity and a 2.18-fold increase in half-life at 40 °C, respectively. Kinetic parameters indicated that the Km values of mutant V6 were 34.5 % (lactose) and 25.0 % (GDP-L-fucose) lower than those of the wild enzyme, whereas the kcat/Km values were 1.20 and 1.25-fold higher than those of the wild enzyme. Further, 3D-structure analysis revealed that the highly rigid structure, formation of new hydrogen bonds, increased hydrophobic residues and redistribution of electrostatic charges on the surface may be responsible for the elevated enzyme activity and thermostability. The strategy adopted in this study is of great significance to the solution of the technical bottleneck of HpfutC and the industrial application of 2'-FL.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Niu J, Ma B, Shen J, Chi H, Zhou H, Lu Z, Lu F, Zhu P. Structure-Guided Steric Hindrance Engineering of Devosia Strain A6-243 Quinone-Dependent Dehydrogenase to Enhance Its Catalytic Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:549-558. [PMID: 38153089 DOI: 10.1021/acs.jafc.3c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Deoxynivalenol (DON), the most widely distributed mycotoxin worldwide, causes severe health risks for humans and animals. Quinone-dependent dehydrogenase derived from Devosia strain A6-243 (DADH) can degrade DON into less toxic 3-keto-DON and then aldo-keto reductase AKR13B3 can reduce 3-keto-DON into relatively nontoxic 3-epi-DON. However, the poor catalytic efficiency of DADH made it unsuitable for practical applications, and it has become the rate-limiting step of the two-step enzymatic cascade catalysis. Here, structure-guided steric hindrance engineering was employed to enhance the catalytic efficiency of DADH. After the steric hindrance engineering, the best mutant, V429G/N431V/T432V/L434V/F537A (M5-1), showed an 18.17-fold increase in specific activity and an 11.04-fold increase in catalytic efficiency (kcat/Km) compared with that of wild-type DADH. Structure-based computational analysis provided information on the increased catalytic efficiency in the directions that attenuated steric hindrance, which was attributed to the reshaped substrate-binding pocket with an expanded catalytic binding cavity and a favorable attack distance. Tunnel analysis suggested that reshaping the active cavity by mutation might alter the shape and size of the enzyme tunnels or form one new enzyme tunnel, which might contribute to the improved catalytic efficiency of M5-1. These findings provide a promising strategy to enhance the catalytic efficiency by steric hindrance engineering.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Li X, Chen B, Chen W, Pu Z, Qi X, Yang L, Wu J, Yu H. Customized multiple sequence alignment as an effective strategy to improve performance of Taq DNA polymerase. Appl Microbiol Biotechnol 2023; 107:6507-6525. [PMID: 37658164 DOI: 10.1007/s00253-023-12744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Engineering Taq DNA polymerase (TaqPol) for improved activity, stability and sensitivity was critical for its wide applications. Multiple sequence alignment (MSA) has been widely used in engineering enzymes for improved properties. Here, we first designed TaqPol mutations based on MSA of 2756 sequences from both thermophilic and non-thermophilic organisms. Two double mutations were generated including a variant H676F/R677G showing a decrease in both activity and stability, and a variant Y686R/E687K showing an improved activity, but a decreased stability. Mutations targeted on coevolutionary residues of Arg677 and Tyr686 were then applied to rescue stability or activity loss of the double mutants, which achieved a partial success. Sequence analysis revealed that the two mutations are abundant in non-thermophilic sequences but not in thermophilic homologues. Then, a small-scale MSA containing sequences from only thermophilic organisms was applied to predict 13 single variants and two of them, E507Q and E734N showed a simultaneous increase in both stability and activity, even in sensitivity. A customized MSA was hence more effective in engineering a thermophilic enzyme and could be used in engineering other enzymes. Molecular dynamics simulations revealed the impact of mutations on the protein dynamics and interactions between TaqPol and substrates. KEY POINTS: • The pool of sequence for alignment is critical to engineering Taq DNA polymerase. • The variants with low properties can be rescued by mutations in coevolving network. • Improving binding with DNA can improve DNA polymerase stability and activity.
Collapse
Affiliation(s)
- Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Xin Qi
- Building No.4, Zhongguancun Dongsheng International Science Park, No. 1 North Yongtaizhuang Road, Haidian District, Beijing, 100192, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
15
|
Li S, Cao L, Yang X, Wu X, Xu S, Liu Y. Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-)rational design strategies and investigation of the underlying mechanisms. BIORESOURCE TECHNOLOGY 2023; 374:128792. [PMID: 36842511 DOI: 10.1016/j.biortech.2023.128792] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The performance of β-glucosidase during cellulose saccharification is determined by thermostability, activity and glucose tolerance. However, conflicts between them make it challenging to simultaneously optimize three properties. In this work, such a case was reported using Bgl6-M3 as a starting point. Firstly, four thermostability-enhancing mutations were obtained using computer-aided engineering strategies (mutant M7). Secondly, substrate binding pocket of M7 was reshaped, generating two mutations that increased activity but decreased glucose tolerance (mutant M9). Then a key region lining active site cavity was redesigned, resulting in three mutations that boosted glucose tolerance and activity. Finally, mutant M12 with simultaneously improved thermostability (half-life of 20-fold), activity (kcat/Km of 5.6-fold) and glucose tolerance (ΔIC50 of 200 mM) was obtained. Mechanisms for property improvement were elucidated by structural analysis and molecular dynamics simulations. Overall, the strategies used here and new insights into the underlying mechanisms may provide guidance for multi-property engineering of other enzymes.
Collapse
Affiliation(s)
- Shuifeng Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lichuang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangpeng Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangrui Wu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shujing Xu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuhuan Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
16
|
Dong R, Liao M, Liu X, Penttinen L, Hakulinen N, Qin X, Wang X, Huang H, Luo H, Yao B, Bai Y, Tu T. Effectiveness of ruminal xylanase with an extra proline-rich C-terminus on lignocellulosic biomass degradation. BIORESOURCE TECHNOLOGY 2023; 372:128695. [PMID: 36731612 DOI: 10.1016/j.biortech.2023.128695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The efficient degradation of plant polysaccharides in agricultural waste requires xylanases with high catalytic activity. In this study, the C-terminal proline-rich GH10 xylanase XynA from sheep rumen was investigated using product analysis, structural characterization, truncated and site-directed mutagenesis, molecular dynamics simulation, and application evaluation, revealing that the proline-rich C-terminus contributes to the interaction at the substrate-binding pocket to reduce the binding free energy. Compared to the C-terminally truncated enzyme XynA-Tr, XynA has a more favorable conformation for proton transfer and affinity attack, facilitating the degradation of oligomeric and beechwood xylan without altering the hydrolysis pattern. Moreover, both the reduced sugar yield and weight loss of the pretreated wheat bran, corn cob, and corn stalk hydrolyzed by XynA for 12 h increased by more than 30 %. These findings are important to better understand the relationship between enzyme activities and their terminal regions and suggest candidate materials for lignocellulosic biomass utilization.
Collapse
Affiliation(s)
- Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Liao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Leena Penttinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Zhu W, Qin L, Xu Y, Lu H, Wu Q, Li W, Zhang C, Li X. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001. Foods 2023; 12:foods12040879. [PMID: 36832954 PMCID: PMC9957083 DOI: 10.3390/foods12040879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Glycoside hydrolase family 11 (GH11) xylanases are the preferred candidates for the production of functional oligosaccharides. However, the low thermostability of natural GH11 xylanases limits their industrial applications. In this study, we investigated the following three strategies to modify the thermostability of xylanase XynA from Streptomyces rameus L2001 mutation to reduce surface entropy, intramolecular disulfide bond construction, and molecular cyclization. Changes in the thermostability of XynA mutants were analyzed using molecular simulations. All mutants showed improved thermostability and catalytic efficiency compared with XynA, except for molecular cyclization. The residual activities of high-entropy amino acid-replacement mutants Q24A and K104A increased from 18.70% to more than 41.23% when kept at 65 °C for 30 min. The catalytic efficiencies of Q24A and K143A increased to 129.99 and 92.26 mL/s/mg, respectively, compared with XynA (62.97 mL/s/mg) when using beechwood xylan as the substrate. The mutant enzyme with disulfide bonds formed between Val3 and Thr30 increased the t1/260 °C by 13.33-fold and the catalytic efficiency by 1.80-fold compared with the wild-type XynA. The high thermostabilities and hydrolytic activities of XynA mutants will be useful for enzymatic production of functional xylo-oligosaccharides.
Collapse
Affiliation(s)
- Weijia Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Liqin Qin
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyun Lu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
18
|
Zhao H, Zhang H, She Z, Gao Z, Wang Q, Geng Z, Dong Y. Exploring AlphaFold2's Performance on Predicting Amino Acid Side-Chain Conformations and Its Utility in Crystal Structure Determination of B318L Protein. Int J Mol Sci 2023; 24:2740. [PMID: 36769074 PMCID: PMC9916901 DOI: 10.3390/ijms24032740] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Recent technological breakthroughs in machine-learning-based AlphaFold2 (AF2) are pushing the prediction accuracy of protein structures to an unprecedented level that is on par with experimental structural quality. Despite its outstanding structural modeling capability, further experimental validations and performance assessments of AF2 predictions are still required, thus necessitating the development of integrative structural biology in synergy with both computational and experimental methods. Focusing on the B318L protein that plays an essential role in the African swine fever virus (ASFV) for viral replication, we experimentally demonstrate the high quality of the AF2 predicted model and its practical utility in crystal structural determination. Structural alignment implies that the AF2 model shares nearly the same atomic arrangement as the B318L crystal structure except for some flexible and disordered regions. More importantly, side-chain-based analysis at the individual residue level reveals that AF2's performance is likely dependent on the specific amino acid type and that hydrophobic residues tend to be more accurately predicted by AF2 than hydrophilic residues. Quantitative per-residue RMSD comparisons and further molecular replacement trials suggest that AF2 has a large potential to outperform other computational modeling methods in terms of structural determination. Additionally, it is numerically confirmed that the AF2 model is accurate enough so that it may well potentially withstand experimental data quality to a large extent for structural determination. Finally, an overall structural analysis and molecular docking simulation of the B318L protein are performed. Taken together, our study not only provides new insights into AF2's performance in predicting side-chain conformations but also sheds light upon the significance of AF2 in promoting crystal structural determination, especially when the experimental data quality of the protein crystal is poor.
Collapse
Affiliation(s)
- Haifan Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhun She
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Song Z, Zhang Q, Wu W, Pu Z, Yu H. Rational design of enzyme activity and enantioselectivity. Front Bioeng Biotechnol 2023; 11:1129149. [PMID: 36761300 PMCID: PMC9902596 DOI: 10.3389/fbioe.2023.1129149] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The strategy of rational design to engineer enzymes is to predict the potential mutants based on the understanding of the relationships between protein structure and function, and subsequently introduce the mutations using the site-directed mutagenesis. Rational design methods are universal, relatively fast and have the potential to be developed into algorithms that can quantitatively predict the performance of the designed sequences. Compared to the protein stability, it was more challenging to design an enzyme with improved activity or selectivity, due to the complexity of enzyme molecular structure and inadequate understanding of the relationships between enzyme structures and functions. However, with the development of computational force, advanced algorithm and a deeper understanding of enzyme catalytic mechanisms, rational design could significantly simplify the process of engineering enzyme functions and the number of studies applying rational design strategy has been increasing. Here, we reviewed the recent advances of applying the rational design strategy to engineer enzyme functions including activity and enantioselectivity. Five strategies including multiple sequence alignment, strategy based on steric hindrance, strategy based on remodeling interaction network, strategy based on dynamics modification and computational protein design are discussed and the successful cases using these strategies are introduced.
Collapse
Affiliation(s)
- Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Qunfeng Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Hu B, Zhao X, Zhou J, Li J, Chen J, Du G. Efficient hydroxylation of flavonoids by using whole-cell P450 sca-2 biocatalyst in Escherichia coli. Front Bioeng Biotechnol 2023; 11:1138376. [PMID: 36873357 PMCID: PMC9977193 DOI: 10.3389/fbioe.2023.1138376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The hydroxylation is an important way to generate the functionalized derivatives of flavonoids. However, the efficient hydroxylation of flavonoids by bacterial P450 enzymes is rarely reported. Here, a bacterial P450 sca-2mut whole-cell biocatalyst with an outstanding 3'-hydroxylation activity for the efficient hydroxylation of a variety of flavonoids was first reported. The whole-cell activity of sca-2mut was enhanced using a novel combination of flavodoxin Fld and flavodoxin reductase Fpr from Escherichia coli. In addition, the double mutant of sca-2mut (R88A/S96A) exhibited an improved hydroxylation performance for flavonoids through the enzymatic engineering. Moreover, the whole-cell activity of sca-2mut (R88A/S96A) was further enhanced by the optimization of whole-cell biocatalytic conditions. Finally, eriodictyol, dihydroquercetin, luteolin, and 7,3',4'-trihydroxyisoflavone, as examples of flavanone, flavanonol, flavone, and isoflavone, were produced by whole-cell biocatalysis using naringenin, dihydrokaempferol, apigenin, and daidzein as the substrates, with the conversion yield of 77%, 66%, 32%, and 75%, respectively. The strategy used in this study provided an effective method for the further hydroxylation of other high value-added compounds.
Collapse
Affiliation(s)
- Baodong Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Exploring the mechanism of compromised thermostability of aromatic L-amino acid decarboxylase from Bacillus atrophaeus through comparative molecular dynamics simulations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|