1
|
Sun G, Zhan SP, Zhao YF, Du X, Shi MY, Li J, Yuan H, Wen X, Sun H, Xu QL. Organophosphorus-Catalyzed Direct Dehydroxylative Thioetherification of Alcohols with Hypervalent Organosulfur Compounds. J Org Chem 2024. [PMID: 38173188 DOI: 10.1021/acs.joc.3c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A metal-free and thiol-free organophosphorus-catalyzed method for forming thioethers was disclosed, driven by PIII/PV═O redox cycling. In this work, one-step dehydroxylative thioetherification of alcohols was fulfilled with various hypervalent organosulfur compounds. This established strategy features an excellent functional group tolerance and broad substrate scope, especially inactivated alcohols. The scale-up reaction and further transformation of the product were also successful. Additionally, this method offers a protecting-group-free and step-efficient approach for synthesizing peroxisome proliferator-activated receptor agonists which exhibited promising potential for treating osteoporosis in mammals.
Collapse
Affiliation(s)
- Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Shi-Ping Zhan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yi-Feng Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xingyi Du
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Mao-Ying Shi
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
2
|
Jiang X, Xiao L, Chen Y, Huang C, Wang J, Tang X, Wan K, Xu H. Degradation of the Novel Heterocyclic Insecticide Pyraquinil in Water: Kinetics, Degradation Pathways, Transformation Products Identification, and Toxicity Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37378629 DOI: 10.1021/acs.jafc.3c01971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
As new pesticides are continuously introduced into agricultural systems, it is essential to investigate their environmental behavior and toxicity effects to better evaluate their potential risks. In this study, the degradation kinetics, pathways, and aquatic toxicity of the new fused heterocyclic insecticide pyraquinil in water under different conditions were investigated for the first time. Pyraquinil was classified as an easily degradable pesticide in natural water, and hydrolyzes faster in alkaline conditions and at higher temperatures. The formation trends of the main transformation products (TPs) of pyraquinil were also quantified. Fifteen TPs were identified in water using ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap-HRMS) and Compound Discoverer software, which adopted suspect and nontarget screening strategies. Among them, twelve TPs were reported for the first time and 11 TPs were confirmed by synthesis of their standards. The proposed degradation pathways have demonstrated that the 4,5-dihydropyrazolo[1,5-a]quinazoline skeleton of pyraquinil is stable enough to retain in its TPs. ECOSAR prediction and laboratory tests showed that pyraquinil was "very toxic" or "toxic" to aquatic organisms, while the toxicities of all of the TPs are substantially lower than that of pyraquinil except for TP484, which was predicted to pose a higher toxicity. The results are important for elucidating the fate and assessing the environmental risks of pyraquinil, and provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jiale Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
3
|
Shi HB, Zhai ZW, Min LJ, Han L, Sun NB, Cantrell CL, Bajsa-Hirschel J, Duke SO, Liu XH. Synthesis and pesticidal activity of new 1,3,4-oxadiazole thioether compounds containing a trifluoromethylpyrazoyl moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [PMCID: PMC9486790 DOI: 10.1007/s11164-022-04839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In order to find new lead compounds with high pesticidal activity, a series of 1,3,4-oxadiazole thioether compounds (5 series) were designed by using penthiopyrad as a synthon. They were synthesized easily via five steps by using ethyl 4,4,4-trifluoro-3-oxobutanoate and triethyl orthoformate as starting materials. The synthesized compounds were characterized by 1H NMR, 13C NMR and HRMS. The compound 2-(benzylthio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5a) was further determined by X-ray single-crystal diffraction. It crystallized in the monoclinic system, space group P21/c, Z = 4. All the 1,3,4-oxadiazole thioether derivatives were screened for fungicidal activity against ten fungi and herbicidal activity against two weeds. The bioassay results indicated that some of the synthesized 1,3,4-oxadiazole compounds exhibited good fungicidal activity (> 50% inhibition) against the plant pathogens Sclerotinia sclerotiorum and Rhizoctonia solani at 50 μg/mL. Some of them exhibited certain herbicidal activity, and compounds 2-((3-chlorobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5e) and 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) had bleach effect. Molecular docking is to find the best fit orientation of the 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) molecule with the SDH protein (PDB: 2FBW). The docking results indicate that the compound 5 g and the lead compound penthiopyrad have similar binding interactions with SDH and carbonyl is a key group for these compounds.
Collapse
Affiliation(s)
- Hai-Bo Shi
- Chemical Engineering College, Ningbo Polytechnic, Ningbo, 315800 China
| | - Zhi-Wen Zhai
- College of Life Science, Huzhou University, Huzhou, 313000 China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Li-Jing Min
- College of Life Science, Huzhou University, Huzhou, 313000 China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, USDA ARS, University, MS 38677 USA
| | | | - Stephen O. Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677 USA
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|