1
|
Bai X, Liu B, Fan D, Lu Y, Zhao X. Modulating the gut microbiota: A novel perspective in colorectal cancer treatment. Cancer Lett 2025; 612:217459. [PMID: 39805389 DOI: 10.1016/j.canlet.2025.217459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Colorectal cancer (CRC), the second leading cause of cancer-related deaths worldwide, is intricately linked to the dysregulation of the gut microbiota. Manipulating the gut microbiota has emerged as a novel strategy for the prevention and treatment of CRC. Natural products, a pivotal source in new drug discovery, have shown promise in recent research as regulators of the gut microbiota, offering potential applications in the prevention and treatment of CRC. In this work, commencing with a focus on the gut microbiota, we first elucidate the latest research on the intricate relationship between the gut microbiota and CRC. Additionally, we explore the impact of the gut microbiota on immunotherapy and chemotherapy treatments for CRC. Subsequently, we review the latest research findings on the regulation of the gut microbiota for CRC prevention through various mechanisms by natural products. These mechanisms include promoting the growth of beneficial bacteria, eradicating harmful bacteria, and enhancing the synthesis of beneficial metabolites. Furthermore, we summarize the advancements in research on natural products that alleviate chemotherapy toxicity and enhance the efficacy of immunotherapy by modulating the gut microbiota. Ultimately, we aspire to leverage advancements in nanomedicine and multiomics technologies to gain a deeper understanding of the mechanisms by which natural products regulate the gut microbiota. This work leverages gut microbiota as a focal point, aiming to offer new perspectives for developing novel natural products for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Boyang Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Han G, Xu Y, Li J, Li K, Xu X, Gao X, Zhao Y, Jiang H, Mao X. Hypoglycemic peptide preparation from Bacillus subtilis fermented with Pyropia: Identification, molecular docking, and in vivo confirmation. Food Chem 2025; 463:141096. [PMID: 39241416 DOI: 10.1016/j.foodchem.2024.141096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Hypoglycemic foods have attracted increasing research interest. This study prepared a hypoglycemic product from Bacillus subtilis fermented with Pyropia (PBP), which has promising industrial potential, and elucidated its hypoglycemic mechanism. The aqueous PBP solution was orange, with protein as the main functional component. In vivo experiments demonstrated that PBP could increase insulin secretion and inhibit α-glucosidase activity, resulting in a hypoglycemic effect superior to that of acarbose at the same dose. Molecular docking revealed that the peptides APPVDID, GPPDSPY, PPSSPRP, and SPPPPPA from PBP could inhibit both α-glucosidase and dipeptidyl peptidase-IV (DPP-IV) activities. Pro residues promoted PBP peptide binding to the hydrophobic pocket S1 of DPP-IV. Additionally, PBP reduced inflammation and promoted the growth of beneficial gut bacteria (Prevotellaceae_UCG_003, Lachnospiraceae_UCG_001). This study presents a novel approach for the high-value utilization of Pyropia and a new option for the production of hypoglycemic functional foods and medicines.
Collapse
Affiliation(s)
- Guixin Han
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China; Jingye (Qingdao) Biotechnology Co. Ltd., Qingdao, Shandong Province 266109, PR China
| | - Yuxian Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China; Jingye (Qingdao) Biotechnology Co. Ltd., Qingdao, Shandong Province 266109, PR China
| | - Jiayu Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Ke Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Yuanhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China.
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| |
Collapse
|
3
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Yuan L, Li Y, Chen M, Xue L, Wang J, Ding Y, Gu Q, Zhang J, Zhao H, Xie X, Wu Q. Therapeutic applications of gut microbes in cardiometabolic diseases: current state and perspectives. Appl Microbiol Biotechnol 2024; 108:156. [PMID: 38244075 PMCID: PMC10799778 DOI: 10.1007/s00253-024-13007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Cardiometabolic disease (CMD) encompasses a range of diseases such as hypertension, atherosclerosis, heart failure, obesity, and type 2 diabetes. Recent findings about CMD's interaction with gut microbiota have broadened our understanding of how diet and nutrition drive microbes to influence CMD. However, the translation of basic research into the clinic has not been smooth, and dietary nutrition and probiotic supplementation have yet to show significant evidence of the therapeutic benefits of CMD. In addition, the published reviews do not suggest the core microbiota or metabolite classes that influence CMD, and systematically elucidate the causal relationship between host disease phenotypes-microbiome. The aim of this review is to highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as fecal microbiota transplantation and nanomedicine. KEY POINTS: • To highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. • We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as FMT and nanomedicine. • Our study provides insight into identification-specific microbiomes and metabolites involved in CMD, and microbial-host changes and physiological factors as disease phenotypes develop, which will help to map the microbiome individually and capture pathogenic mechanisms as a whole.
Collapse
Affiliation(s)
- Lin Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
5
|
Sánchez-Quintero MJ, Delgado J, Martín Chaves L, Medina-Vera D, Murri M, Becerra-Muñoz VM, Estévez M, Crespo-Leiro MG, Paz López G, González-Jiménez A, A. G. Ranea J, Queipo-Ortuño MI, Plaza-Andrades I, Rodríguez-Capitán J, Pavón-Morón FJ, Jiménez-Navarro MF. Multi-Omics Approach Reveals Prebiotic and Potential Antioxidant Effects of Essential Oils from the Mediterranean Diet on Cardiometabolic Disorder Using Humanized Gnotobiotic Mice. Antioxidants (Basel) 2023; 12:1643. [PMID: 37627638 PMCID: PMC10451832 DOI: 10.3390/antiox12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils sourced from herbs commonly used in the Mediterranean diet have demonstrated advantageous attributes as nutraceuticals and prebiotics within a model of severe cardiometabolic disorder. The primary objective of this study was to assess the influences exerted by essential oils derived from thyme (Thymus vulgaris) and oregano (Origanum vulgare) via a comprehensive multi-omics approach within a gnotobiotic murine model featuring colonic microbiota acquired from patients diagnosed with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM). Our findings demonstrated prebiotic and potential antioxidant effects elicited by these essential oils. We observed a substantial increase in the relative abundance of the Lactobacillus genus in the gut microbiota, accompanied by higher levels of short-chain fatty acids and a reduction in trimethylamine N-oxide levels and protein oxidation in the plasma. Moreover, functional enrichment analysis of the cardiac tissue proteome unveiled an over-representation of pathways related to mitochondrial function, oxidative stress, and cardiac contraction. These findings provide compelling evidence of the prebiotic and antioxidant actions of thyme- and oregano-derived essential oils, which extend to cardiac function. These results encourage further investigation into the promising utility of essential oils derived from herbs commonly used in the Mediterranean diet as potential nutraceutical interventions for mitigating chronic diseases linked to CAD and T2DM.
Collapse
Grants
- PI-0170-2018, PI-0131/2020, and PI-0245-2021 Consejería de Salud y Familias-Junta de Andalucía and European Regional Development Funds/European Social Fund
- UMA20-FEDERJA-074 Universidad de Málaga, Consejería de Economía, Conocimiento, Empresas y Universidad-Junta de Andalucía and ERDF/ESF
- ProyExcel_01009 Consejería de Transformación Económica, Industria, Conocimiento y Universidades-Junta de Andalucía and ERDF/ESF
- SEC/FEC-INV-BAS 23 Sociedad Española de Cardiología and Fundación Andaluza de Cardiología
- PT20/00101 Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España
- CB16/11/00360 CIBERCV-Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España and ERDF/ESF
- Q-2918001-E Cátedra de Terapias Avanzadas en Patología Cardiovascular, Universidad de Málaga
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josué Delgado
- Higiene y Salud Alimentaria, Faculty of Veterinary, University of Extremadura, 10003 Cáceres, Spain;
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - Laura Martín Chaves
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Dina Medina-Vera
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Clinical Management Unit of Mental Health, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Mora Murri
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Clinical Management Unit of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Víctor M. Becerra-Muñoz
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Mario Estévez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - María G. Crespo-Leiro
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Service of Cardiology, Complexo Hospitalario Universitario A Coruña (CHUAC), University of A Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Guillermo Paz López
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Andrés González-Jiménez
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Juan A. G. Ranea
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Málaga, 29010 Málaga, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
- Department of Surgical Specialties, Biochemistry, and Immunology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Isaac Plaza-Andrades
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Francisco Javier Pavón-Morón
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Manuel F. Jiménez-Navarro
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
6
|
Wang D, Wang JX, Yan C, Liu Y, Liu H, Li D, Zhu J, Luo ZB, Han SZ, Jin ZY, Chang SY, Yang LH, Kang JD, Quan LH. Gastrodia elata Blume extract improves high-fat diet-induced type 2 diabetes by regulating gut microbiota and bile acid profile. Front Microbiol 2022; 13:1091712. [PMID: 36532435 PMCID: PMC9756436 DOI: 10.3389/fmicb.2022.1091712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 03/24/2024] Open
Abstract
In this study, we aimed to characterize the anti-type 2 diabetes (T2D) effects of Gastrodia elata Blume extract (GEBE) and determine whether these are mediated through modification of the gut microbiota and bile acids. Mice were fed a high-fat diet (HFD), with or without GEBE, and we found that GEBE significantly ameliorated the HFD-induced hyperglycemia, insulin resistance, and inflammation by upregulating glucose transporter 4 (GLUT4) and inhibiting the toll-like receptor 4-nuclear factor kappa-B signaling pathway in white adipose tissue (WAT). In addition, we found that GEBE increased the abundance of Faecalibaculum and Lactobacillus, and altered the serum bile acid concentrations, with a significant increase in deoxycholic acid. The administration of combined antibiotics to mice to eliminate their intestinal microbiota caused a loss of the protective effects of GEBE. Taken together, these findings suggest that GEBE ameliorates T2D by increasing GLUT4 expression in WAT, remodeling the gut microbiota, and modifying serum bile acid concentrations.
Collapse
Affiliation(s)
- Danqi Wang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University and Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jun-Xia Wang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Chunri Yan
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, China
| | - Yize Liu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University and Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hongye Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Dongxu Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University and Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jun Zhu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University and Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhao-Bo Luo
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, Jilin, China
| | - Lin-Hu Quan
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University and Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|