1
|
Hosseini‐Esfahani F, Ildarabadi A, Daei S, Koochakpoor G, Nematollahi A, Mirmiran P, Azizi F. Acrylamide Intake and Metabolic Syndrome Risk: The Tehran Lipid and Glucose Study. Food Sci Nutr 2025; 13:e70038. [PMID: 40255553 PMCID: PMC12006729 DOI: 10.1002/fsn3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/07/2024] [Accepted: 02/04/2025] [Indexed: 04/22/2025] Open
Abstract
This cohort study aimed to determine the relationship between acrylamide intake and the risk of metabolic syndrome (MetS) and its risk factors in Tehranian adults. A total of 1762 men and 2786 women, respectively, with a mean ± SD age of 38.6 ± 14.3 and 35.9 ± 11.8 years and body mass index of 25.8 ± 4.31 were evaluated in this secondary analysis of the Tehran Lipid and Glucose Study. Dietary data were collected using a standard food frequency questionnaire. Total acrylamide intake was computed using the amount of acrylamide measured in 30 food items. MetS was defined according to the Iranian-modified National Cholesterol Education Program. Multivariable Cox proportional hazard regression models were used to estimate the incidence of MetS and its risk factors associated with acrylamide intake, considering confounding factors (e.g., age, sex, physical activity, body mass index, smoking). During the average follow-up of 6.23 ± 2.58 years, 1279 (28% of total) subjects had MetS incidence. The incidence of MetS was not associated with quartiles of acrylamide intake. After adjusting for confounding factors, participants in the fourth quartile of acrylamide intake had 15% and 21% higher risk of high triglyceride and high waist circumference, respectively. Moreover, acrylamide intake was positively related to high blood pressure incidence (Hazard ratio [Confidence interval] Q1-Q4: 1, 1.0 [0.92-1.08], 1.10 [1.02-1.19], 1.16 [1.07-1.26], p trend = 0.003). Based on findings, no apparent association was observed between acrylamide intake and MetS incidence. Long-term intake of acrylamide is associated with an increased risk of hypertriglyceridemia, high blood pressure, and abdominal obesity.
Collapse
Affiliation(s)
- Firoozeh Hosseini‐Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Azam Ildarabadi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Shahrzad Daei
- Nutrition and Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of HealthFasa University of Medical SciencesFasaIran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Cai Y, Wang Y, He Y, Ren K, Liu Z, Zhao L, Wei T. Utilizing alternative in vivo animal models for food safety and toxicity: A focus on thermal process contaminant acrylamide. Food Chem 2025; 465:142135. [PMID: 39579401 DOI: 10.1016/j.foodchem.2024.142135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Rodent models have traditionally been used to assess the toxicity of food chemicals, but this approach is costly, time-consuming, and raises ethical concerns. Alternatively, non-mammalian models such as Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been shown to be suitable for studying the toxicity of food hazards. Their advantages include low cost, short life cycles, adaptability to high-throughput screening, and adherence to the 3R principles of replacement, reduction, and refinement. These models have been extensively studied in the context of acrylamide toxicity, a common food contaminant. This article comprehensively reviews the biological characteristics of non-mammalian models, recent advances and challenges in acrylamide toxicity research using these models, and explores the potential of natural plant compounds in ameliorating acrylamide toxicity. The review aims to guide research using non-mammalian models for food safety assessment.
Collapse
Affiliation(s)
- Yang Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuhan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yanfei He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kefeng Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zongzhong Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
3
|
Mérida DM, Rey-García J, Moreno-Franco B, Guallar-Castillón P. Acrylamide Exposure and Cardiovascular Risk: A Systematic Review. Nutrients 2024; 16:4279. [PMID: 39770901 PMCID: PMC11677207 DOI: 10.3390/nu16244279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Acrylamide is a food contaminant formed during high-temperature cooking processes, leading to unintentional human exposure. Diet is the primary source for non-smokers, with potatoes, cereals, and coffee being the main contributors. While animal studies have demonstrated that acrylamide is neurotoxic, genotoxic, mutagenic, and cardiotoxic, its effects on human cardiovascular health remain poorly understood. This study aimed to evaluate the association between acrylamide exposure and cardiovascular risk. Methods: A comprehensive literature search was conducted across four databases without restrictions on publication year or language (last search: 1 July 2024). The risk of bias was assessed using the Joanna Briggs Institute critical appraisal tools. Results: In total, 28 studies were included, predominantly from the US NHANES sample and with cross-sectional designs. Higher acrylamide exposure was associated with an increased risk of cardiovascular mortality but was inversely associated with glucose and lipid levels, as well as key cardiovascular risk factors such as diabetes, obesity, and metabolic syndrome. Conversely, glycidamide-acrylamide's most reactive metabolite-was positively associated with elevated glucose and lipid levels, higher systolic blood pressure, and increased obesity prevalence. Conclusions: These findings suggest that the adverse cardiovascular effects of acrylamide may be mediated by its conversion to glycidamide. Further research is necessary to fully elucidate the impact of acrylamide on cardiovascular health. Meanwhile, public health efforts should continue to focus on mitigation strategies within the food industry and raising public awareness about exposure.
Collapse
Affiliation(s)
- Diana María Mérida
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Department of Pharmacoepidemiology and Biostatistics, Fundación Teófilo Hernando, 28290 Las Rozas de Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
| | - Jimena Rey-García
- Department of Internal Medicine, Hospital Universitario Rey Juan Carlos, IIS-FJD, 28933 Móstoles, Spain
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain
- CIBERCV (CIBER of Cardiovascular Diseases), 28029 Madrid, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain
| |
Collapse
|
4
|
Wan X, Ao Y, Liu X, Zhuang P, Huang Y, Shi H, Jiao J, Zhang Y. Fried food consumption, genetic risk, and incident obesity: a prospective study. Food Funct 2024; 15:2760-2771. [PMID: 38385219 DOI: 10.1039/d3fo02803h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Background and aims: Genetic and dietary factors contribute to adiposity risk, but little evidence supports genetic personalization of fried food intake recommendations for the management of obesity. This study aimed to assess the associations between fried food consumption and adiposity incidence and whether the associations were modified by an individual's genotype. Methods: We included 27 427 participants who had dietary data assessed by a validated 24 h dietary recall and available anthropometric information from the UK Biobank study. The genetic risk score (GRS) was calculated using 940 BMI associated variants. Results: With an average of 8.1 years of follow-up, 1472 and 2893 participants were defined as having overall obesity and abdominal obesity, respectively. Individuals in the highest categories of fried food consumption were positively associated with the risk of obesity (HR = 1.31; 95% CI 1.10-1.56) and abdominal obesity (HR = 1.27; 95% CI 1.12-1.45) compared with the lowest categories. Moreover, fried food consumption had a significant interatction with obesity GRS for abdominal obesity risk (P interaction = 0.016). Fried food intake was associated with a higher abdominal obesity risk (HR = 1.59, 95% CI: 1.25-2.00) among participants with a lower genetic risk. Conclusions: Our findings indicated that fried food consumption had a higher abdominal obesity risk among individuals with a lower genetic risk, suggesting the restriction of fried food intake for this group of people.
Collapse
Affiliation(s)
- Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yingyu Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongbo Shi
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang A, Wan X, Zhuang P, Jia W, Ao Y, Liu X, Tian Y, Zhu L, Huang Y, Yao J, Wang B, Wu Y, Xu Z, Wang J, Yao W, Jiao J, Zhang Y. High fried food consumption impacts anxiety and depression due to lipid metabolism disturbance and neuroinflammation. Proc Natl Acad Sci U S A 2023; 120:e2221097120. [PMID: 37094155 PMCID: PMC10160962 DOI: 10.1073/pnas.2221097120] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Western dietary patterns have been unfavorably linked with mental health. However, the long-term effects of habitual fried food consumption on anxiety and depression and underlying mechanisms remain unclear. Our population-based study with 140,728 people revealed that frequent fried food consumption, especially fried potato consumption, is strongly associated with 12% and 7% higher risk of anxiety and depression, respectively. The associations were more pronounced among male and younger consumers. Consistently, long-term exposure to acrylamide, a representative food processing contaminant in fried products, exacerbates scototaxis and thigmotaxis, and further impairs exploration ability and sociality of adult zebrafish, showing anxiety- and depressive-like behaviors. Moreover, treatment with acrylamide significantly down-regulates the gene expression of tjp2a related to the permeability of blood-brain barrier. Multiomics analysis showed that chronic exposure to acrylamide induces cerebral lipid metabolism disturbance and neuroinflammation. PPAR signaling pathway mediates acrylamide-induced lipid metabolism disorder in the brain of zebrafish. Especially, chronic exposure to acrylamide dysregulates sphingolipid and phospholipid metabolism, which plays important roles in the development of anxiety and depression symptoms. In addition, acrylamide promotes lipid peroxidation and oxidation stress, which participate in cerebral neuroinflammation. Acrylamide dramatically increases the markers of lipid peroxidation, including (±)5-HETE, 11(S)-HETE, 5-oxoETE, and up-regulates the expression of proinflammatory lipid mediators such as (±)12-HETE and 14(S)-HDHA, indicating elevated cerebral inflammatory status after chronic exposure to acrylamide. Together, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered anxiety and depression, and highlight the significance of reducing fried food consumption for mental health.
Collapse
Affiliation(s)
- Anli Wang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Xuzhi Wan
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Wei Jia
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Yang Ao
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Yimei Tian
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Li Zhu
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Yingyu Huang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Jianxin Yao
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| |
Collapse
|