1
|
Wang C, Xiao R, Yang Q, Pan J, Cui P, Zhou S, Qiu L, Zhang Y, Wang J. Green synthesis of epigallocatechin gallate-ferric complex nanoparticles for photothermal enhanced antibacterial and wound healing. Biomed Pharmacother 2024; 171:116175. [PMID: 38266620 DOI: 10.1016/j.biopha.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
Bacterial infections are a significant global health concern, particularly in the context of skin infections and chronic wounds, which was further exacerbated by the emerging of antibiotic resistance. Therefore, there are urgent needs to develop alternative antibacterial strategies without inducing significant resistance. Photothermal therapy (PTT) is a promising alternative approach but usually faces limitations such as the need for stable and environmental-friendly PTT agents and ensuring biocompatibility with living tissues, necessitating ongoing research for its clinical advancement. Herein, in this study, with the aim to develop a green synthesized PTT agent for photothermal enhanced antibacterial and wound healing, we proposed a facile one-pot method to prepare epigallocatechin gallate-ferric (EGCG-Fe) complex nanoparticles. The obtained nanoparticles showed improved good size distribution and stability with high reproducibility. More importantly, EGCG-Fe complex nanoparticles have additional photothermal conversion ability which can give photothermal enhanced antibacterial effect on various pathogens, including Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) strains. EGCG-Fe complex nanoparticles also showed powerful biofilm prevention and destruction effects with promoted antibacterial and wound healing on mice model. In conclusion, EGCG-Fe complex nanoparticles can be a robust green material with effective and novel light controllable antibacterial properties for photothermal enhanced antibacterial and wound healing applications.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China.
| | - Ru Xiao
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Qingbo Yang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Jiaoyang Pan
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Pengfei Cui
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Shuwen Zhou
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Lin Qiu
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China; Hebei Higher Education Applied Technology Research Center of TCM Development and Industrialization, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China.
| | - Jianhao Wang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China.
| |
Collapse
|
2
|
Wang Z, Zheng Y, Lai Z, Hu X, Wang L, Wang X, Li Z, Gao M, Yang Y, Wang Q, Li N. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int J Biol Macromol 2024; 254:127955. [PMID: 37944714 DOI: 10.1016/j.ijbiomac.2023.127955] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Polysaccharides have been widely used in pharmaceutical and food industries due to their diverse bioactivity, high safety, and few or no side effects. However, inability to quickly produce, screen, and synthesize bioactive polysaccharides is the limiting factor for their development and application. Structural features determine and influence the bioactivity of polysaccharides. Among them, monosaccharide is the basic unit of polysaccharide, which not only affects electrification, functional group, and bioactivity of polysaccharide but also is one of the simplest polysaccharide indexes to be detected. At present, effects of monosaccharide composition and proportion on anti-inflammatory, antioxidant, antitumor, immunomodulatory, antibacterial, and prebiotic activities of polysaccharides are reviewed. Further problems need to be considered during regulation and analysis of monosaccharide composition and proportion of polysaccharides. Overall, present work will provide help and reference for production, development, and structure-function investigation of polysaccharides based on their monosaccharide.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Zhou X, Guan C, Ma Q, Lan T, Lin Q, Zhou W, Liu C. Elaboration and characterization of ε-polylysine‑sodium alginate nanoparticles for sustained antimicrobial activity. Int J Biol Macromol 2023; 251:126329. [PMID: 37595718 DOI: 10.1016/j.ijbiomac.2023.126329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The ε-polylysine (ε-PL) is a food-grade antimicrobial substance. The cationic ε-PL molecules may interact with anionic components of food matrix causing turbidity, sedimentation, and hampering the antimicrobial activity. Herein, sodium alginate (SA) was used as wall material to encapsulate ε-PL, thereby to synthesize ε-PL-SA nanoparticles (ε-PL-SA-NPs). Monosaccharide composition and molecular weight of SA were characterized. The synthetic scheme is optimized and physicochemical characteristics and antimicrobial potential was investigated. Findings indicate that SA primarily consisted of mannuronic acid (95.25 %), weight average molecular weight (Mw) of SA was 176.464 kDa, and the molecular configuration of SA was irregular line clusters. The encapsulation efficiency (EE) of ε-PL in ε-PL-SA-NPs made under optimum strategy (at pH 6.0, mass ratio of ε-PL to SA is 0.14, and SA concentration is 6 mg/mL) is about 99.74 %. The particle size of ε-PL-SA-NPs is ∼541.86 nm. The SEM image showed that the ε-PL-SA-NPs had a nearly spherical morphology. Zeta-potential and FTIR data reveal the interaction between ε-PL and SA was electrostatic and the hydrogen bonding. Agar diffusion assay exhibit that ε-PL-SA-NPs had antimicrobial activity against Escherichia coli and Staphylococcus aureus. The salmon preservation experiments reveal sustained antimicrobial efficacy of ε-PL-SA-NPs.
Collapse
Affiliation(s)
- Xiaojie Zhou
- National Engineering Research Center for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422099, China
| | - Chunmin Guan
- National Engineering Research Center for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qianqian Ma
- National Engineering Research Center for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianqing Lan
- National Engineering Research Center for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Research Center for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenhua Zhou
- National Engineering Research Center for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chun Liu
- National Engineering Research Center for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
4
|
Yan S, Wang Q, Yu J, Li Y, Qi B. Soy protein interactions with polyphenols: Structural and functional changes in natural and cationized forms. Food Chem X 2023; 19:100866. [PMID: 37780344 PMCID: PMC10534206 DOI: 10.1016/j.fochx.2023.100866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Herein, cationic soy protein (NSPI) was synthesized by grafting Ethylenediamine (EDA) onto soy protein isolate (SPI), and protein-gallic acid (GA) complexes were formed by mixing NSPI with GA in various ratios. We assessed the structure, particle size, thermal stability, emulsifying ability, and antioxidant capacity of NSPI and complexes. Results show that grafting with EDA introduced a positive charge to SPI and resulted in a uniform particle size, and enhanced thermal stability, emulsifying ability, and antioxidant capacity. In addition, NSPI presented more amino groups and stronger interactions with GA compared to SPI. EDA and GA synergistically increased the flexibility of SPI, reducing the α-helix content and increasing the random coil content. Moreover, the interactions between SPI, NSPI, and GA were static, and hydrophobic and electrostatic between GA and SPI and NSPI, respectively. Grafting SPI with EDA improved functionality and interactions with GA, implying that NSPI-GA complexes may function as emulsifiers and antioxidants.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaye Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
5
|
Zhang W, Shen H, Li Y, Yang K, Lei P, Gu Y, Sun L, Xu H, Wang R. Preparation of Type-A Gelatin/Poly-γ-Glutamic Acid Nanoparticles for Enhancing the Stability and Bioavailability of (-)-Epigallocatechin Gallate. Foods 2023; 12:foods12091748. [PMID: 37174287 PMCID: PMC10178256 DOI: 10.3390/foods12091748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) has gained considerable attention owing to its beneficial properties. However, its application as a functional food is restricted due to its instability and low bioavailability. In the present study, a food-derived nanoparticle system based on type A gelatin/γ-PGA was developed to preserve and deliver EGCG. The EGCG/gelatin/γ-PGA nanoparticles had a particle size of 155.1 ± 7.3 nm with a zeta potential of -23.9 ± 0.9 mV. Moreover, the EGCG/gelatin/γ-PGA nanoparticles enhanced the long-term storage stability and sustained antioxidant activity of EGCG compared to EGCG/gelatin nanoparticles. The nanoparticles protected EGCG in simulated gastric fluid containing pepsin while releasing it in simulated intestinal fluid. Additionally, the amount of EGCG transported in the Caco-2 monolayers treated with EGCG/gelatin/γ-PGA nanoparticles was three times higher than that of free EGCG, which might be related to the paracellular pathway and endocytosis. These results suggest that EGCG/gelatin/γ-PGA nanoparticles might be an effective delivery vehicle for EGCG, enhancing its potential applications in the functional food field.
Collapse
Affiliation(s)
- Weijie Zhang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Huangchen Shen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Ying Li
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Kai Yang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yian Gu
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Liang Sun
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Rui Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
6
|
Xiao L, Hou Y, Xue Z, Bai L, Wang W, Chen H, Yang H, Yang L, Wei D. Soy Protein Isolate/Genipin-Based Nanoparticles for the Stabilization of Pickering Emulsion to Design Self-Healing Guar Gum-Based Hydrogels. Biomacromolecules 2023; 24:2087-2099. [PMID: 37079862 DOI: 10.1021/acs.biomac.2c01507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nowadays, stretchable self-healing hydrogels designed by biomass-based materials have gathered remarkable attention in numerous frontier fields such as wound healing, health monitoring issues, and electronic skin. In this study, soy protein isolate (SPI), a common plant protein, was cross-linked to nanoparticles (SPI NPs) by Genipin, (Gen) which was attracted from the native Geniposide. Oil-in-water (O/W) Pickering emulsion was formed by SPI NPs wrapping the linseed oil, and further implanted into poly(acrylic acid)/guar gum (PAA/GG)-based self-healing hydrogels by multiple reversible weak interactions. With the addition of Pickering emulsion, the hydrogels have achieved a remarkable self-healing ability (self-healing efficiency could reach 91.6% within 10 h) and mechanical properties (tensile strength of 0.89 MPa and strain of 853.2%). Therefore, these hydrogels with good reliable durability have outstanding application prospects in sustainable materials.
Collapse
Affiliation(s)
- Lixuan Xiao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Yaning Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Zhiyan Xue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|