1
|
Jiang Z, Shi D, Fu H, Li Y, Zou R, He Z, Shi J, Shen L, Tang B, Xu Z, Yang Q, Duan H. Discovery of multi-chitinase inhibitors cinnamyl thiazolidinone compounds as candidates for insect growth regulators via ligand-based optimization strategies. Int J Biol Macromol 2025; 306:141805. [PMID: 40054824 DOI: 10.1016/j.ijbiomac.2025.141805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Chitinases are recognized as potential targets to develop novel insecticides to control lepidopteran pests. However, the design and development of effective multi-chitinase inhibitors remains a huge challenge. Based on the backgrounds, in this study, we designed and synthesized a series of cinnamyl-thiazolidinedione compounds as potential inhibitors against OfChtI, OfChtII and OfChi-h, for the first time, by integrating strategies including fragment replacement, 3D QSAR-guided design, and bioelectronic isosteric replacement. Among all synthesized compounds, those displayed substantial activities against three chitinases, such as 5f and 9m, simultaneously demonstrated significant larvicidal activities and growth regulation effects against various lepidopteran pests. Inhibition mechanism studies indicated that the π interactions, hydrophobic stacking, and electrostatic interactions between cinnamyl-thiazolidinone compounds and the conserved aromatic tryptophan and phenylalanine residues, as well as the polar asparagine residues in three chitinases, were crucial for their interactions. Furthermore, the qPCR experiment suggested that cinnamyl-thiazolidinone compounds could regulate the chitin metabolism pathway of Ostrinia furnacalis in vivo. This study provides the first successful example of developing novel multi-chitinase inhibitors through ligand-based optimization strategies, offering promising candidates for controlling lepidopteran pests.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Haoyu Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Ziqi He
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Jie Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lijuan Shen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Li S, Wang G, Zhang Y, Zhao W, Yang H, Yin X, Li Y. Discovery of Novel Isoxazoline Derivatives Containing Pyrazolamide Fragment as Insecticidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6580-6588. [PMID: 40053670 DOI: 10.1021/acs.jafc.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Lepidopteran species cause significant harm to agricultural yields and food quality. In this study, a series of innovative isoxazoline derivatives incorporating pyrazolamide moieties were carefully designed and synthesized as potential insecticidal agents. Among these, compound F16 demonstrated an LC50 value of 0.01 mg/L against Plutella xylostella, surpassing that of the lead compound fluxametamide (LC50 = 0.15 mg/L). Furthermore, F16 exhibited broad-spectrum insecticidal activity against Pyrausta nubilalis, Spodoptera frugiperda, Chilo suppressalis, Aphis craccivora, and Sogatella furcifera. Notably, F16 possessed low toxicity against Danio rerio, whereas fluxametamide displayed moderate toxicity. Furthermore, molecular docking analysis demonstrated that the potent insecticidal activity of F16 is likely mediated by its specific interactions with γ-GABA receptors primarily through the formation of hydrogen bonds with key residues. Density functional theory calculations and molecular electrostatic potentials were also performed to gain insights into the insecticidal behavior of F16. These findings suggest that F16 is a promising candidate for further investigation as a novel pesticide.
Collapse
Affiliation(s)
- Shaochen Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guangpeng Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yanyang Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenli Zhao
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huiying Yang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xue Yin
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Wu Y, Hu S, Mao Q, Shi D, Liu X, Liu B, Hua L, Hu G, Li C, Duan H, Tang B. The impact of three thioxothiazolidin compounds on trehalase activity and development of Spodoptera frugiperda larvae. PeerJ 2024; 12:e18233. [PMID: 39399419 PMCID: PMC11470766 DOI: 10.7717/peerj.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Trehalases (TREs), serving as crucial enzymes regulating trehalose and chitin metabolism in insects, represent prime targets for pest control strategies. We investigated the impact of three thioxothiazolidin compounds (1G, 2G, and 11G) on TRE activity and summarized their effects on the growth and development of Spodoptera frugiperda (Lepidoptera, Noctuidae). The experimental larvae of S. frugiperda were injected with the three thioxothiazolidin compounds (1G, 2G, and 11G), while the control group received an equivalent volume of 2% DMSO as a control. All three compounds had a strong effect on inhibiting TRE activity, significantly prolonging the pre-pupal development stage. However, compared with the 11G-treated group, the survival rate of larvae treated with 1G and 2G was significantly reduced by 31.11% and 27.78% respectively, while the occurrence of phenotypic abnormalities related to growth and development was higher. These results manifest that only the TRE inhibitors, 1G and 2G, modulate trehalose and chitin metabolism pathways of larvae, ultimately resulting in the failure molting and reduction of survival rates. Consequently, the thioxothiazolidin compounds, 1G and 2G, hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiangyu Liu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Tang B, Han Y, Mao Q, Fu H, Luo Y, Hua L, Liu B, Hu G, Wang S, Desneux N, Duan H, Wu Y. Regulation of three novel pepper thiothiazolidinones on the fecundity of Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106033. [PMID: 39277359 DOI: 10.1016/j.pestbp.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Spodoptera frugiperda has emerged as a major invasive pest worldwide. The utilization of chemical pesticides not only poses numerous ecological concerns but also fosters resistance in S. frugiperda. In this study, we designed and synthesized three novel thiothiazolidinone compounds (6a, 7b, and 7e) and incorporated innovative thiothiazolidinone structural elements into the piperine skeleton. Treatment with compounds 6a and 7e resulted in the blackening and agglomeration of oviduct eggs within the ovaries of certain female moths, impeding the release of normal eggs. The levels of vitellogenin and vitellogenin receptor, along with three trehalase inhibitors, exhibited a dynamic equilibrium state, leading to no discernible change in egg production but a notable increase in the generation of low-hatching-rate egg fragments. Compared with the injection of 2%DMSO, the eclosion rate of 6a injection was significantly decreased, as followed the spawning time and longevity were prolonged or significantly prolonged in the trehalase inhibitors of 6a, 7b, and 7e. We aimed to investigate the regulatory impacts of three new pepper thiothiazolidinone compounds on the reproduction of S. frugiperda, and to authenticate the efficacy of novel alginase inhibitors in inhibiting the reproduction of S. frugiperda. This research endeavors to aid in the identification of efficient and steadfast trehalase inhibitors, thereby expediting the research and development of potent biological pesticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Haoyu Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China.
| |
Collapse
|
5
|
Guo B, Chen L, Luo S, Wang C, Feng Y, Li X, Cao C, Zhang L, Yang Q, Zhang X, Yang X. A Potential Multitarget Insect Growth Regulator Candidate: Design, Synthesis, and Biological Activity of Novel Acetamido Derivatives Containing Hexacyclic Pyrazole Carboxamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10271-10281. [PMID: 38655868 DOI: 10.1021/acs.jafc.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Insect growth regulators (IGRs) are important green insecticides that disrupt normal growth and development in insects to reduce the harm caused by pests to crops. The ecdysone receptor (EcR) and three chitinases OfChtI, OfChtII, and OfChi-h are closely associated with the molting stage of insects. Thus, they are considered promising targets for the development of novel insecticides such as IGRs. Our previous work identified a dual-target compound 6j, which could act simultaneously on both EcR and OfChtI. In the present study, 6j was first found to have inhibitory activities against OfChtII and OfChi-h, too. Subsequently, taking 6j as a lead compound, 19 novel acetamido derivatives were rationally designed and synthesized by introducing an acetamido moiety into the amide bridge based on the flexibility of the binding cavities of 6j with EcR and three chitinases. Then, their insecticidal activities against Plutella xylostella (P. xylostella), Ostrinia furnacalis (O. furnacalis), and Spodoptera frugiperda (S. frugiperda) were carried out. The bioassay results revealed that most of these acetamido derivatives possessed moderate to good larvicidal activities against three lepidopteran pests. Especially, compound I-17 displayed excellent insecticidal activities against P. xylostella (LC50, 93.32 mg/L), O. furnacalis (LC50, 114.79 mg/L), and S. frugiperda (86.1% mortality at 500 mg/L), significantly better than that of 6j. In addition, further protein validation and molecular docking demonstrated that I-17 could act simultaneously on EcR (17.7% binding activity at 8 mg/L), OfChtI (69.2% inhibitory rate at 50 μM), OfChtII (71.5% inhibitory rate at 50 μM), and OfChi-h (73.9% inhibitory rate at 50 μM), indicating that I-17 is a potential lead candidate for novel multitarget IGRs. This work provides a promising starting point for the development of novel types of IGRs as pest management agents.
Collapse
Affiliation(s)
- Bingbo Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lei Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 97 Buxin Road, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shihui Luo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chunying Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanjiao Feng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Congwang Cao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 97 Buxin Road, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Tang B, Hu S, Luo Y, Shi D, Liu X, Zhong F, Jiang X, Hu G, Li C, Duan H, Wu Y. Impact of Three Thiazolidinone Compounds with Piperine Skeletons on Trehalase Activity and Development of Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8423-8433. [PMID: 38565327 DOI: 10.1021/acs.jafc.3c08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| |
Collapse
|
7
|
Cai F, Wang C. Comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and toxicology of alkamides (2016-2022). PHYTOCHEMISTRY 2024; 220:114006. [PMID: 38309452 DOI: 10.1016/j.phytochem.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Alkamides refer to a class of natural active small-molecule products composed of fatty acids and amine groups. These compounds are widely distributed in plants, and their unique structures and various pharmacological activities have caught the attention of scholars. This review provides a collection of literatures related to the phytochemistry, pharmacological effects, pharmacokinetics, and toxicity of alkamides published in 2016-2022 and their summary to provide references for further development of this class of ingredients. A total of 234 components (including chiral isomers) were summarized, pharmacological activities, such as anti-inflammatory, antitumor, antidiabetic, analgesic, neuroprotective, insecticidal, antioxidant, and antibacterial, and miscellaneous properties of alkamides were discussed. In addition, the pharmacokinetic characteristics and toxicity of alkamides were reviewed. However, information on the pharmacological mechanisms of the action, drug safety, and pharmacokinetics of alkamides is limited and thus requires further investigation and evaluation.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
8
|
Zou R, Li X, Jiang X, Shi D, Han Q, Duan H, Yang Q. Novel Butenolide Derivatives as Dual-Chitinase Inhibitors to Arrest the Growth and Development of the Asian Corn Borer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5036-5046. [PMID: 38377548 DOI: 10.1021/acs.jafc.3c06714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
OfChtI and OfChi-h are considered potential targets for the control of Asian corn borer (Ostrinia furnacalis). In this work, the previously reported OfChtI inhibitor 5f was found to show certain inhibitory activity against OfChi-h (Ki = 5.81 μM). Two series of novel butenolide derivatives based on lead compound 5f were designed with the conjugate skeleton, contributing to the π-binding interaction to chitinase, and then synthesized. Compounds 4a-l and 7a-p displayed excellent inhibitory activities against OfChtI and OfChi-h, respectively, at a concentration of 10 μM. Compound 4h was found to be a good dual-Chitinase inhibitor, with Ki values of 1.82 and 2.00 μM against OfChtI and OfChi-h, respectively. The inhibitory mechanism studies by molecular docking suggested that π-π stacking interactions were crucial to the inhibitory activity of novel butenolide derivatives against two different chitinases. A preliminary bioassay indicated that 4h exhibited certain growth inhibition effects against O. furnacalis. Butenolide-like analogues should be further studied as promising novel dual-chitinase inhibitor candidates for the control of O. furnacalis.
Collapse
Affiliation(s)
- Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Xiang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Xi Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, People's Republic of China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, People's Republic of China
| |
Collapse
|
9
|
Han J, Zhang S, He J, Li T. Piperine: Chemistry and Biology. Toxins (Basel) 2023; 15:696. [PMID: 38133200 PMCID: PMC10747706 DOI: 10.3390/toxins15120696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Piperine is a plant-derived promising piperamide candidate isolated from the black pepper (Piper nigrum L.). In the last few years, this natural botanical product and its derivatives have aroused much attention for their comprehensive biological activities, including not only medical but also agricultural bioactivities. In order to achieve sustainable development and improve survival conditions, looking for environmentally friendly pesticides with low toxicity and residue is an extremely urgent challenge. Fortunately, plant-derived pesticides are rising like a shining star, guiding us in the direction of development in pesticidal research. In the present review, the recent progress in the biological activities, mechanisms of action, and structural modifications of piperine and its derivatives from 2020 to 2023 are summarized. The structure-activity relationships were analyzed in order to pave the way for future development and utilization of piperine and its derivatives as potent drugs and pesticides for improving the local economic development.
Collapse
Affiliation(s)
- Jin Han
- School of Public Administration, Xi’an University of Finance and Economics, Xi’an 710061, China;
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China;
| | - Jun He
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
10
|
Jiang X, Zhong F, Chen Y, Shi D, Chao L, Yu L, He B, Xu C, Wu Y, Tang B, Duan H, Wang S. Novel compounds ZK-PI-5 and ZK-PI-9 regulate the reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae), with insecticide potential. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1850-1861. [PMID: 37478561 DOI: 10.1093/jee/toad140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Trehalase inhibitors prevent trehalase from breaking down trehalose to provide energy. Chitinase inhibitors inhibit chitinase activity affecting insect growth and development. This is an important tool for the investigation of regulation of trehalose metabolism and chitin metabolism in insect reproduction. There are few studies on trehalase or chitinase inhibitors' regulation of insect reproduction. In this study, ZK-PI-5 and ZK-PI-9 were shown to have a significant inhibitory effect on the trehalase, and ZK-PI-9 significantly inhibited chitinase activity in female pupae. We investigated the reproduction regulation of Spodoptera frugiperda using these new inhibitors and evaluated their potential as new insecticides. Compounds ZK-PI-5 and ZK-PI-9 were injected into the female pupae, and the control group was injected with solvent (2% DMSO). The results showed that the emergence failure rate for pupae treated with inhibitors increased dramatically and aberrant phenotypes such as difficulty in wings spreading occurred. The oviposition period and longevity of female adults in the treated group were significantly shorter than those in the control group, and the ovaries developed more slowly and shrank earlier. The egg hatching rate was significantly reduced by treatment with the inhibitor. These results showed that the two new compounds had a significant impact on the physiological indicators related to reproduction of S. frugiperda, and have pest control potential. This study investigated the effect of trehalase and chitin inhibitors on insect reproduction and should promote the development of green and efficient insecticides.
Collapse
Affiliation(s)
- Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Yan Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Dongmei Shi
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Lei Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Liuhe Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Biner He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Caidi Xu
- Jing Hengyi School of Education, HangzhouNormal University, Hangzhou, Zhejiang 311121, P.R.China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department ,Guiyang University, Guiyang 550005, P.R.China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Hongxia Duan
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
11
|
Lu Q, Xie H, Qu M, Liu T, Yang Q. Group h Chitinase: A Molecular Target for the Development of Lepidopteran-Specific Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37038745 DOI: 10.1021/acs.jafc.2c08845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture requires insecticides that are selective between insects and mammals and even between harmful and beneficial insects. Lepidoptera includes the largest number of insect pests that threaten crops, and Hymenoptera contains the natural enemies for these pests. Discovery of lepidopteran-specific molecular targets is one route to develop such selective pesticides. Group h chitinase (Chi-h) is an ideal target for lepidopteran-specific insecticides because it is only distributed in Lepidoptera and is critical to their molting processes. This minireview focuses on the latest progress in developing Chi-h as a lepidopteran-specific insecticide target. We describe the biological function, crystal structure, and small-molecule inhibitors of the enzyme. Notably, two unique pockets were discovered in the crystal structure of Chi-h for the binding of the selective inhibitors, phlegmacin B1 and lynamicin B. Moreover, lynamicin B was found to exhibit significant insecticidal activity toward lepidopteran pests but is harmless toward their natural enemies. These findings are advancing the development of selective insecticides to meet the needs of sustainable agriculture.
Collapse
Affiliation(s)
- Qiong Lu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaodong 116024, People's Republic of China
| | - Huijie Xie
- School of Bioengineering, Dalian University of Technology, Dalian, Liaodong 116024, People's Republic of China
| | - Mingbo Qu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaodong 116024, People's Republic of China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaodong 116024, People's Republic of China
| | - Qing Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
12
|
Zhong F, Yu L, Jiang X, Chen Y, Wang S, Chao L, Jiang Z, He B, Xu C, Wang S, Tang B, Duan H, Wu Y. Potential inhibitory effects of compounds ZK-PI-5 and ZK-PI-9 on trehalose and chitin metabolism in Spodoptera frugiperda (J. E. Smith). Front Physiol 2023; 14:1178996. [PMID: 37064912 PMCID: PMC10090375 DOI: 10.3389/fphys.2023.1178996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction:Spodoptera frugiperda is an omnivorous agricultural pest which is great dangerous for grain output.Methods: In order to investigate the effects of potential trehalase inhibitors, ZK-PI-5 and ZK-PI-9, on the growth and development of S. frugiperda, and to identify new avenues for S. frugiperda control, we measured the content of the trehalose, glucose, glycogen and chitin, enzyme activity, and gene expression levels in trehalose and chitin metabolism of S. frugiperda. Besides, their growth and development were also observed.Results: The results showed that ZK-PI-9 significantly reduced trehalase activity and ZK-PI-5 significantly reduced membraned-bound trehalase activity. Moreover, ZK-PI-5 inhibited the expression of SfTRE2, SfCHS2, and SfCHT, thus affecting the chitin metabolism. In addition, the mortality of S. frugiperda in pupal stage and eclosion stage increased significantly after treatment with ZK-PI-5 and ZK-PI-9, which affected their development stage and caused death phenotype (abnormal pupation and difficulty in breaking pupa).Discussion: These results have provided a theoretical basis for the application of trehalase inhibitors in the control of agricultural pests to promote future global grain yield.
Collapse
Affiliation(s)
- Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liuhe Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Sitong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Biner He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Caidi Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Bin Tang, ; Hongxia Duan, ; Yan Wu,
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- *Correspondence: Bin Tang, ; Hongxia Duan, ; Yan Wu,
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- *Correspondence: Bin Tang, ; Hongxia Duan, ; Yan Wu,
| |
Collapse
|
13
|
Zhao C, Gong Y, Zheng L, Zhao M. The Degree of Hydrolysis and Peptide Profile Affect the Anti-Fatigue Activities of Whey Protein Hydrolysates in Promoting Energy Metabolism in Exercise Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3010-3021. [PMID: 36748231 DOI: 10.1021/acs.jafc.2c08269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effects of characteristics of whey protein hydrolysates (WPHs) on energy metabolism in exercise mice. Results showed that high-degree of hydrolysis (DH) hydrolysates (22%, H-Alc and H-AXH) showed better anti-fatigue effects than low-DH hydrolysates (10%, L-Alc and L-AXH) in enhancing energy substances and reducing metabolic byproducts. It might be related to the higher content of components less than 3 kDa in H-Alc and H-AXH (92.35 and 81.05%, respectively) and higher intensities of small peptides containing two to nine residues. Moreover, Western blot results revealed that WPHs maintained the energy balance in exercise mice by regulating the AMP-activated protein kinase (AMPK) and mTOR signaling pathways. Notably, H-Alc had higher intensities of peptides containing two to five residues than H-AXH and these peptides were rich in essential amino acids, which might explain why H-Alc exhibited better effects in decreasing protein metabolites. Meanwhile, H-AXH contained more free amino acids, especially Leu, which might contribute to its ability to promote glucose consumption in muscle. Furthermore, 40 peptides with two to nine residues and high intensities (>5 × 105) were screened from H-Alc and H-AXH and predicted by bioinformatics tools. Among them, LLL, LLF, GTW, AGTW, and ALPM showed high bioavailability, cell permeability, and potential bioactivity.
Collapse
Affiliation(s)
- Chaoya Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yurong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Food Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|