1
|
Wang GQ, Liu HW, Zhou Y, Zhang L, Zhang JR, Shao LH, Zhou X, Wu ZB, Liu LW, Yang S. Novel 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole derivatives decorated with disulfide moiety are effective for treating bacterial infections by inducing reactive oxygen species. PEST MANAGEMENT SCIENCE 2025. [PMID: 40364659 DOI: 10.1002/ps.8895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/28/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Infectious diseases caused by pathogenic bacteria are the main causes of death in humans, and responsible for reduced yield quality and quantity of plants globally. This underscores the need for developing bactericide alternatives with novel modes-of-action. RESULTS Herein, we devised a series of novel 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole derivatives decorating with the disulfide moiety (W1-W36). Bioassay results indicated their antibacterial activity against three pathogenic bacteria [Xoo (Xanthomonas oryzae pv. oryzae), Xac (Xanthomonas axonopodis pv. citri) and Psa (Pseudomonas syringae pv. actinidiae)]. Compound W1 demonstrated eminent anti-Xoo activity in vitro, with a median effecgtive concentration (EC50) value of 0.77 μg mL-1, which was considerably higher than that of the reference agent thiodiazole copper (TC, EC50 = 104 μg mL-1). At 200 μg mL-1, compound W1 demonstrated better in vivo control efficiency (46.09% curative activity; 51.26% protective activity) toward rice bacterial blight diseases, with a >20% increase in activity relative to that of the control TC. Mechanistic studies revealed that compound W1 enabled the suppression of the activities of oxidoreductases including superoxide dismutase and catalase, disrupted the redox balance, and ultimately induced bacterial cell apoptosis. CONCLUSION Overall, these new molecules were characterized by high antibacterial ability, reactive oxygen species targeting performance, and low toxicity. They demonstrated unprecedented potential for controlling bacterial infection. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guo-Qing Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ya Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ling Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jun-Rong Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Hui Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Zhang ZS, Zhao DS, Zhu D, Guan M, Xiong LT, He Z, Li Y, Shi Y, Xu ZL, Deng X, Cui ZN. Design, Synthesis, and Biological Evaluation of Asymmetrical Disulfides Based on Garlic Extract as Pseudomonas aeruginosa pqs Quorum Sensing Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5850-5859. [PMID: 40014758 DOI: 10.1021/acs.jafc.4c12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pseudomonas aeruginosa is a widely encountered bacterium linked to the deterioration of food products and represents a notable concern for public health safety. Disulfides serve as significant pharmacologically active scaffolds exhibiting antibacterial, antiviral, and anticancer properties; however, reports on their activity as quorum sensing inhibitors (QSIs) against P. aeruginosa are limited. In our work, asymmetrical disulfides were designed and synthesized, utilizing natural products, such as allicin, ajoene, diallyl disulfide (DADS), hordenine, and cinnamic acid, as lead compounds. By screening for lasB, rhlA, and pqsA promoter activity, two highly effective QSIs were identified. Compounds 7d and 4c show effectiveness in reducing the synthesis of different virulence factors, the creation of biofilms, and movement capabilities. Subsequent validation using the Galleria mellonella larvae model confirmed their robust in vivo efficacy. Moreover, their combination with antibiotics markedly augmented the antibacterial activity. Mechanism studies employed by transcriptome analysis, quantitative reverse transcription-PCR (qRT-PCR), surface plasmon resonance, and molecular docking demonstrate that compound 7d disrupts the quorum sensing system by interacting with PqsR. These findings suggest that our disulfide derivatives hold promise for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Di Zhu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Guan
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yasheng Li
- Department of Infectious Diseases, Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yu Shi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Ling Xu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Huang J, Chen S, He W, Xiao Y, Wang N, Huang L. Phenazine-1-carboxylic Acid Has a Broad-Spectrum Antifungal Effect by Targeting Isocitrate Lyase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5007-5019. [PMID: 39971905 DOI: 10.1021/acs.jafc.4c08303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Phenazine-1-carboxylic acid (PCA), as a broad-spectrum antifungal agent, showed significant resistance against the Apple Valsa canker caused by Valsa mali (V. mali). Therefore, it is of great importance to reveal the functions and mechanisms of PCA in plant pathogens, which would provide potential targets for crop disease control. In this study, we identified the major contribution of PCA in the resistance of Pseudomonas chlororaphis subsp. aureofaciens W9-1 to V. mali by gene knockout and high-performance liquid chromatography. Subsequently, we demonstrated that PCA could target isocitrate lyase (ICL) to exert a broad-spectrum antifungal effect by molecular docking, microscale thermophoresis, and isothermal titration calorimetry. Furthermore, lipidomics analysis shows that PCA alters the lipid balance at the cell membrane of V. mali. In summary, this study demonstrates that PCA has a broad-spectrum antifungal effect by targeting the ICL, which may be a potential target for the development and utilization of fungicides.
Collapse
Affiliation(s)
- Jing Huang
- College of Life Science, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyi Chen
- College of Life Science, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weipeng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinan Xiao
- College of Life Science, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nana Wang
- College of Life Science, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Tian Q, Du T, Xu A, Li Y. Design, Synthesis, and 3D-QASR of Oxazoline Derivatives Containing an S-S Moiety as Potential Acaricide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23727-23735. [PMID: 39417360 DOI: 10.1021/acs.jafc.4c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
To mitigate the detrimental effects of agricultural pest mites on crop yield, an active substructure splicing strategy was employed to modify etoxazole by introducing an S-S moiety. The target products were obtained efficiently via a bilateral disulfurating reagent (DSMO), which was developed by our group. The leaf dip method was used to evaluate the activities of the designed target compounds against the eggs and larvae of the spider mite (Tetranychus cinnabarinus). Most of the target compounds exhibited good efficacy in controlling the larvae and eggs of T. cinnabarinus. Based on these results, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established to guide the construction of compound 7l. Notably, compound 7l exhibited a better activity against T. cinnabarinus eggs (LC50 = 0.0035 mg/L) compared to etoxazole (LC50 = 0.2990 mg/L). Greenhouse bioassays indicated that compound 7l exhibits excellent acaricidal activity against egg of T. cinnabarinus, which is better than the etoxazole at 1.0 mg/L. Additionally, some of the compounds showed inhibitory effects against Dickeya zeae (D. zeae), Xanthomonas campestris pv campestris (Xcc), Xanthomonas oryzae pvoryza (Xoo), and Xanthomonas oryzae pvoryzicola (Xoc). Furthermore, compounds 7l not only exhibited relatively potent against Plutella xylostella activities (LC50 = 24.0 mg/L) but also had low toxicity (LC50 > 11.0 μg/bee) to Apis mellifera. In conclusion, the current experimental results suggest that oxazoline derivatives containing an S-S moiety have the potential to serve as lead compounds for the development of novel acaricide agents.
Collapse
Affiliation(s)
- Qingqiang Tian
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Tianri Du
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Aijie Xu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Li Y, Mu Y, Cao Y, Xu D, Liu X, Xu G. Synthesis and Evaluation of Novel 1-Methyl-1 H-pyrazol-5-amine Derivatives with Disulfide Moieties as Potential Antimicrobial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20658-20669. [PMID: 39226125 DOI: 10.1021/acs.jafc.4c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sulfur-containing compounds have diverse biological functions and are crucial in crop protection chemistry. In this study, a series of novel 1-methyl-1H-pyrazol-5-amine derivatives incorporating disulfide moieties were synthesized and evaluated for their antimicrobial properties. In vitro bioassays demonstrated that compound 7f displayed potent antifungal activity against Valsa mali, with an EC50 value of 0.64 mg/L, outperforming allicin (EC50 = 26.0 mg/L) but lower than tebuconazole (EC50 = 0.33 mg/L). In vivo experiments confirmed that compound 7f could effectively inhibit V. mali infection on apples at a concentration of 100 mg/L, similar to the positive control tebuconazole. Mechanistic studies revealed that compound 7f could induce hyphal shrinkage and collapse, trigger intracellular reactive oxygen species accumulation, modulate antioxidant enzyme activities, initiate lipid peroxidation, and ultimately cause irreversible oxidative damage to the cells of V. mali. Additionally, compound 7b exhibited notable antibacterial activity, particularly against Pseudomonas syringae pv. actinidiae, with a MIC90 value of 1.56 mg/L, surpassing the positive controls allicin, bismerthiazol, and streptomycin sulfate. These findings suggest that 1-methyl-1H-pyrazol-5-amine derivatives containing disulfide moieties hold promise as potent candidates for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yantao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuxin Mu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuan Cao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
6
|
Tan YM, Zhang J, Wei YJ, Hu YG, Li SR, Zhang SL, Zhou CH. Cyanomethylquinolones as a New Class of Potential Multitargeting Broad-Spectrum Antibacterial Agents. J Med Chem 2024; 67:9028-9053. [PMID: 38787534 DOI: 10.1021/acs.jmedchem.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
This work identified a class of cyanomethylquinolones (CQs) and their carboxyl analogues as potential multitargeting antibacterial candidates. Most of the prepared compounds showed high antibacterial activities against most of the tested bacteria, exhibiting lower MIC values (0.125-2 μg/mL) than those of clinical norfloxacin, ciprofloxacin, and clinafloxacin. The low hemolysis, drug resistance, and cytotoxicity, as well as good predictive pharmacokinetics of active CQs and carboxyl analogues revealed their development potential. Furthermore, they could eradicate the established biofilm, facilitating bacterial exposure to these antibacterial candidates. These active compounds could induce bacterial death through multitargeting effects, including intercalating into DNA, up-regulating reactive oxygen species, damaging membranes directly, and impeding metabolism. Moreover, the highly active cyclopropyl CQ 15 exhibited more effective in vivo anti-MRSA potency than ciprofloxacin. These findings highlight the potential of CQs and their carboxyl analogues as multitargeting broad-spectrum antibacterial candidates for treating intractable bacterial infections.
Collapse
Affiliation(s)
- Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu-Jia Wei
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yue-Gao Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
7
|
Liu Y, Li Y, Peng Y, Feng L, Wang W, Li C, Zhang Y, Wang R, Li C, Ma C, Yang C. Identification and Characterization of Bacterial Alliinase: Resource and Substrate Stereospecificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13228-13239. [PMID: 38810088 DOI: 10.1021/acs.jafc.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Limited alliinase resources cause difficulties in the biosynthesis of thiosulfinates (e.g., allicin), restricting their applications in the agricultural and food industries. To effectively biosynthesize thiosulfinates, this study aimed to excavate bacterial alliinase resources and elucidate their catalytic properties. Two bacterial cystathionine β-lyases (MetCs) possessing high alliinase activity (>60 U mg -1) toward L-(-)-alliin were identified from Allium sativum rhizosphere isolates. Metagenomic exploration revealed that cystathionine β-lyase from Bacillus cereus (BcPatB) possessed high activity toward both L-(±)-alliin and L-(+)-alliin (208.6 and 225.1 U mg -1), respectively. Although these enzymes all preferred l-cysteine S-conjugate sulfoxides as substrates, BcPatB had a closer phylogenetic relationship with Allium alliinases and shared several similar features with A. sativum alliinase. Interestingly, the Trp30Ile31Ala32Asp33 Met34 motif in a cuspate loop of BcPatB, especially sites 31 and 32 at the top of the motif, was modeled to locate near the sulfoxide of L-(+)-alliin and is important for substrate stereospecificity. Moreover, the stereoselectivity and activity of mutants I31V and A32G were higher toward L-(+)-alliin than those of mutant I31L/D33E toward L-(-)-alliin. Using bacterial alliinases and chemically synthesized substrates, we obtained thiosulfinates with high antimicrobial and antinematode activities that could provide insights into the protection of crops and food.
Collapse
Affiliation(s)
- Yuanxiang Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yaru Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Yishu Peng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Luhua Feng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Wei Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Chongzhou Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Ye Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Ruimin Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Chunfang Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
8
|
Xu X, Xiong F, Sun K, Xiao Q, Tan Y, Cheng X, Li X, Jin D, Fan Y. An Oxidoreductase-like Protein is Required for Verticillium dahliae Infection and Participates in the Metabolism of Host Plant Defensive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4669-4678. [PMID: 38383289 DOI: 10.1021/acs.jafc.3c08582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Verticillium dahliae, a notorious phytopathogenic fungus, is responsible for vascular wilt diseases in numerous crops. Uncovering the molecular mechanisms underlying pathogenicity is crucial for controlling V. dahliae. Herein, we characterized a putative oxidoreductase-like protein (VdOrlp) from V. dahliae that contains a functional signal peptide. While the expression of VdOrlp was low in artificial media, it significantly increased during host infection. Deletion of VdOrlp had minimal effects on the growth and development of V. dahliae but severely impaired its pathogenicity. Metabolomic analysis revealed significant changes in organic heterocyclic compounds and phenylpropane compounds in cotton plants infected with ΔVdOrlp and V991. Furthermore, VdOrlp expression was induced by lignin, and its deletion affected the metabolism of host lignin and phenolic acids. In conclusion, our results demonstrated that VdOrlp plays an important role in the metabolism of plant phenylpropyl lignin and organic heterocyclic compounds and is required for fungal pathogenicity in V. dahliae.
Collapse
Affiliation(s)
- Xueping Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangjie Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Kang Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qi Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yingqing Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xi Cheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xianbi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Cheng X, Xu Z, Cui H, Zhang Z, Chen W, Wang F, Li S, Liu Q, Wang D, Lv X, Chang X. Discovery of Pyrazole-5-yl-amide Derivatives Containing Cinnamamide Structural Fragments as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37922127 DOI: 10.1021/acs.jafc.3c04355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
To promote the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we introduced cinnamamide and nicotinamide structural fragments into the structure of pyrazol-5-yl-amide by carbon chain extension and scaffold hopping, respectively, and synthesized a series of derivatives. The results of the biological activity assays indicated that most of the target compounds exhibited varying degrees of inhibitory activity against the tested fungi. Notably, compounds G22, G28, G34, G38, and G39 exhibited excellent in vitro antifungal activities against Valsa mali with EC50 values of 0.48, 0.86, 0.57, 0.73, and 0.87 mg/L, respectively, and this result was significantly more potent than boscalid (EC50 = 2.80 mg/L) and closer to the specialty control drug tebuconazole (EC50 = 0.30 mg/L). Compounds G22 and G34 also exhibited excellent in vivo protective and curative effects against V. mali at 40 mg/L. The SEM and TEM observations indicated that compounds G22 and G34 may affect normal V. mali mycelial morphology as well as the cellular ultrastructure. Molecular docking analysis results indicated that G22 and boscalid possessed a similar binding mode to that of SDH, and detailed SDH inhibition assays validated the feasibility of the designed compounds as potential SDH inhibitors. Compounds G22 and G3 were selected for theoretical calculations, and the terminal carboxylic acid group of this series of compounds may be a key region influencing the antifungal activity. Furthermore, toxicity tests on Apis mellifera l. revealed that compounds G22 and G34 exhibited low toxicity to A. mellifera l. populations. The above results demonstrated that these series of pyrazole-5-yl-amide derivatives are promising for development as potential low-risk drug-resistance agricultural SDHI fungicides.
Collapse
Affiliation(s)
- Xiang Cheng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Hongyun Cui
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Zhang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei Chen
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Fanglei Wang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shanlu Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Qixuan Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
10
|
Bi R, Li R, Xu Z, Cai H, Zhao J, Zhou Y, Wu B, Sun P, Yang W, Zheng L, Chen XL, Luo CX, Teng H, Li Q, Li G. Melatonin targets MoIcl1 and works synergistically with fungicide isoprothiolane in rice blast control. J Pineal Res 2023; 75:e12896. [PMID: 37458404 DOI: 10.1111/jpi.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Melatonina natural harmless molecule-displays versatile roles in human health and crop disease control such as for rice blast. Rice blast, caused by the filamentous fungus Magnaporthe oryzae, is one devastating disease of rice. Application of fungicides is one of the major measures in the control of various crop diseases. However, fungicide resistance in the pathogen and relevant environmental pollution are becoming serious problems. By screening for possible synergistic combinations, here, we discovered an eco-friendly combination for rice blast control, melatonin, and the fungicide isoprothiolane. These compounds together exhibited significant synergistic inhibitory effects on vegetative growth, conidial germination, appressorium formation, penetration, and plant infection by M. oryzae. The combination of melatonin and isoprothiolane reduced the effective concentration of isoprothiolane by over 10-fold as well as residual levels of isoprothiolane. Transcriptomics and lipidomics revealed that melatonin and isoprothiolane synergistically interfered with lipid metabolism by regulating many common targets, including the predicted isocitrate lyase-encoding gene MoICL1. Furthermore, using different techniques, we show that melatonin and isoprothiolane interact with MoIcl1. This study demonstrates that melatonin and isoprothiolane function synergistically and can be used to reduce the dosage and residual level of isoprothiolane, potentially contributing to the environment-friendly and sustainable control of crop diseases.
Collapse
Affiliation(s)
- Ruiqing Bi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Renjian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Zhenyi Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Huanyu Cai
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Juan Zhao
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Bangting Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Chao-Xi Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center for Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|