1
|
Zhi Y, Lu X, Munoz G, Yeung LWY, De Silva AO, Hao S, He H, Jia Y, Higgins CP, Zhang C. Environmental Occurrence and Biotic Concentrations of Ultrashort-Chain Perfluoroalkyl Acids: Overlooked Global Organofluorine Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21393-21410. [PMID: 39535433 DOI: 10.1021/acs.est.4c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large group of anthropogenic fluorinated chemicals. Ultrashort-chain perfluoroalkyl acids (PFAAs) have recently gained attention due to their prevalence in the environment and increasing environmental concerns. In this review, we established a literature database from 1990 to 2024, encompassing environmental and biological concentrations (>3,500 concentration records) of five historically overlooked ultrashort-chain PFAAs (perfluoroalkyl carboxylic and sulfonic acids with less than 4 carbons): trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), trifluoromethanesulfonic acid (TFMS), perfluoroethanesulfonate (PFEtS), and perfluoropropanesulfonate (PFPrS). Our data mining and analysis reveal that (1) ultrashort-chain PFAAs are globally distributed in various environments including water bodies, solid matrices, and air, with concentrations usually higher than those of longer-chain compounds; (2) TFA, the most extensively studied ultrashort-chain PFAA, shows a consistent upward trend in concentrations in surface water, rainwater, and air over the past three decades; and (3) ultrashort-chain PFAAs are present in various organisms, including plants, wildlife, and human blood, serum, and urine, with concentrations sometimes similar to those of longer-chain compounds. The current state of knowledge regarding the sources and fate of TFA and other ultrashort-chain PFAAs is also reviewed. Amid the global urgency to regulate PFASs, particularly as countries worldwide have intensified such efforts, this critical review will inform scientific research and regulatory policies.
Collapse
Affiliation(s)
- Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiongwei Lu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gabriel Munoz
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Leo W Y Yeung
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonghui Jia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100084, China
| |
Collapse
|
2
|
Nesse AS, Jasinska A, Stoknes K, Aanrud SG, Risinggård KO, Kallenborn R, Sogn TA, Ali AM. Low uptake of pharmaceuticals in edible mushrooms grown in polluted biogas digestate. CHEMOSPHERE 2024; 351:141169. [PMID: 38211789 DOI: 10.1016/j.chemosphere.2024.141169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The uptake dynamics of two sulfonamide antibiotics, two fluoroquinolone antibiotics, and the anticonvulsant carbamazepine during the cultivation of two species of edible mushrooms (Agaricus subrufescens and A. bisporus) was investigated. None of the antibiotics were accumulated by the mushrooms, while carbamazepine and its transformation product carbamazepine-10,11-epoxide were taken up by A. bisporus fruiting body but only in small amounts (up to 0.76 and 1.85 μg kg-1 dry weight, respectively). The sulfonamides were quickly removed from the mushroom growth substrate, while the recalcitrant fluoroquinolones and carbamazepine were only partially removed. Dissipation half-lives were generally lower for A. subrufescens than A. bisporus, but A. subrufescens was also grown at a slightly higher culture temperature. A. subrufescens also showed a lower uptake of contaminants. Comparison of maximum dietary intake with other common exposure sources showed that these mushrooms can safely be eaten although produced on a polluted substrate, with respect to the investigated compounds.
Collapse
Affiliation(s)
- Astrid S Nesse
- Norwegian University of Life Sciences, Faculty of Environment and Natural Resources, Elizabeth Stephansensvei 31, 1433, Ås, Norway; Norwegian Institute of Bioeconomy Research, Oluf Thesens Vei 43, 1433, Ås, Norway.
| | - Agnieszka Jasinska
- Lindum AS, Lerpeveien 155, 3036, Drammen, Norway; Poznan University of Life Sciences, Department of Vegetable Crops, Ul. J.H. Dabrowskiego 159, 60-594, Poznan, Poland
| | | | - Stine Göransson Aanrud
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Elizabeth Stephansensvei 15, 1433, Ås, Norway
| | - Kristin Ogner Risinggård
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Elizabeth Stephansensvei 15, 1433, Ås, Norway
| | - Roland Kallenborn
- Norwegian University of Life Sciences, Faculty of Chemistry, Biotechnology and Food Sciences, Chr. M. Falsens Vei 18, 1433, Aas, Norway
| | - Trine A Sogn
- Norwegian University of Life Sciences, Faculty of Environment and Natural Resources, Elizabeth Stephansensvei 31, 1433, Ås, Norway
| | - Aasim M Ali
- Norwegian University of Life Sciences, Faculty of Chemistry, Biotechnology and Food Sciences, Chr. M. Falsens Vei 18, 1433, Aas, Norway; Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| |
Collapse
|
3
|
Dong F, Pan Y, Zhang J, Hu J, Luo Y, Tang J, Dai J, Sheng N. Comprehensive Assessment of Exposure Pathways for Perfluoroalkyl Ether Carboxylic Acids (PFECAs) in Residents Near a Fluorochemical Industrial Park: The Unanticipated Role of Cereal Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19442-19452. [PMID: 37931148 DOI: 10.1021/acs.est.3c06910] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
With the replacement of perfluorooctanoic acid (PFOA) with perfluorinated ether carboxylic acids (PFECAs), residents living near fluorochemical industrial parks (FIPs) are exposed to various novel PFECAs. Despite expectations of low accumulation, short-chain PFECAs, such as perfluoro-2-methoxyacetic acid (PFMOAA), previously displayed a considerably high body burden, although the main exposure routes and health risks remain uncertain. Here, we explored the distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in diverse environmental media surrounding a FIP in Shandong Province, China. PFECAs were found at elevated concentrations in all tested matrices, including vegetables, cereals, air, and dust. Among residents, 99.3% of the ∑36PFAS exposure, with a 43.9% contribution from PFECAs, was due to gastrointestinal uptake. Dermal and respiratory exposures were negligible at 0.1 and 0.6%, respectively. The estimated daily intake (EDI) of PFMOAA reached 114.0 ng/kg body weight (bw)/day, ranking first among all detected PFECAs. Cereals emerged as the dominant contributor to PFMOAA body burden, representing over 80% of the overall EDI. The median EDI of hexafluoropropylene oxide dimer acid (HFPO-DA) was 17.9 ng/kg bw/day, markedly higher than the USEPA reference doses (3.0 ng/kg bw/day). The absence of established threshold values for other PFECAs constrains a comprehensive risk assessment.
Collapse
Affiliation(s)
- Fengfeng Dong
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jian Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Jianglin Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|