1
|
Sun T, He W, Chen X, Shu X, Liu W, Ouyang G. Nanomaterials-Integrated CRISPR/Cas Systems: Expanding the Toolbox for Optical Detection. ACS Sens 2025; 10:2453-2473. [PMID: 40202271 DOI: 10.1021/acssensors.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Nanomaterials-integrated CRISPR/Cas systems have rapidly emerged as powerful next-generation platforms for optical biosensing. These integrated platforms harness the precision of CRISPR/Cas-mediated nucleic acid detection while leveraging the unique properties of nanomaterials to achieve enhanced sensitivity and expanded analytical capabilities, thereby broadening their diagnostic potential. By incorporating a diverse range of nanomaterials, these systems effectively expand the analytical toolbox for optical detection, offering adaptable solutions tailored to various diagnostic challenges. This review provides a comprehensive overview of the nanomaterials successfully integrated into CRISPR/Cas-based optical sensing systems. It examines multiple optical detection modalities, including fluorescence, electrochemiluminescence, colorimetry, and surface-enhanced Raman spectroscopy, highlighting how nanomaterials facilitate signal amplification, enable multiplexing, and support the development of point-of-care applications. Additionally, practical applications of these integrated systems in critical fields such as healthcare diagnostics and environmental monitoring are showcased. While these platforms offer considerable advantages, several real-world challenges such as the complexity of assay workflows, environmental impact of nanomaterials, cost, and regulatory hurdles must be addressed before widespread implementation can be achieved. By identifying these critical obstacles and proposing strategic solutions, we aim to pave the way for the continued advancement and adoption of nanomaterial-integrated CRISPR/Cas optical biosensing technologies.
Collapse
Affiliation(s)
- Tianying Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenfen He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiangmei Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiaoying Shu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
2
|
Yu Y, Chen W, Zhao D, Zhang H, Chen W, Liu R, Li C. Meat species authentication using portable hyperspectral imaging. Front Nutr 2025; 12:1577642. [PMID: 40242162 PMCID: PMC11999835 DOI: 10.3389/fnut.2025.1577642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Meat species fraud seriously harms the interests of consumers and causes food safety problems. Hyperspectral imaging is capable of integrating spectral and imaging technology to simultaneously obtain spectral and spatial information, and has been widely applied to detect adulteration and authenticity of meat. Methods This study aims to develop a portable hyperspectral imager (HSI) and a discrimination model for meat adulteration detection. The portable push broom HSI was designed with the spectral resolution of 5 nm and spatial resolution of 0.1 mm, and controlled with the Raspberry Pi to meet the requirement of on situ rapid detection. To improve generalization, the model transfer method was also developed to achieve model sharing across instruments, providing a reliable solution for rapid assessment of meat species. Results The results demonstrate that the model transfer method can effectively correct the spectral differences due to instrument variation and improve the robustness of the model. The support vector machine (SVM) classifier combined with spectral space transformation (SST) achieved a best accuracy of 94.91%. Additionally, a visualization map was proposed to provide the distribution of meat adulteration, offering valuable insights for fraud detection. Conclusion The portable HSI enables on-site analysis, making it an invaluable tool for various industries, including food safety and quality control.
Collapse
Affiliation(s)
- Yuewen Yu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Wei Chen
- Department of Ophthalmology, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
| | - Dongjie Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Hanwen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Wenliang Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Rong Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Chenxi Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Zhao J, Yang W, Cai H, Cao G, Li Z. Current Progress and Future Trends of Genomics-Based Techniques for Food Adulteration Identification. Foods 2025; 14:1116. [PMID: 40238250 PMCID: PMC11989147 DOI: 10.3390/foods14071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Addressing the pervasive issue of food adulteration and fraud driven by economic interests has long presented a complex challenge. Such adulteration not only compromises the safety of the food supply chain and destabilizes the market economy but also poses significant risks to public health. Food adulteration encompasses practices such as substitution, process manipulation, mislabeling, the introduction of undeclared ingredients, and the adulteration of genetically modified foods. Given the diverse range of deceptive methods employed, genomics-based identification techniques have increasingly been utilized for detecting food adulteration. Compared to traditional detection methods, technologies such as polymerase chain reaction (PCR), next-generation sequencing (NGS), high-resolution melt (HRM) analysis, DNA barcoding, and the CRISPR-Cas system have demonstrated efficacy in accurately and sensitively detecting even trace amounts of adulterants. This paper provides an overview of genomics-based approaches for identifying food adulteration, summarizes the latest applications in certification procedures, discusses current limitations, and explores potential future trends, thereby offering new insights to enhance the control of food quality and contributing to the development of more robust regulatory frameworks and food safety policies.
Collapse
Affiliation(s)
- Jing Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongli Cai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang Universtiy, Hangzhou 310058, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
4
|
Liu J, Wang Y, Zhang X, Huang M, Li G. Direct lysis combined with amplification-free CRISPR/Cas12a-SERS genosensor for ultrafast and on-site identification of meat authenticity. Mikrochim Acta 2025; 192:187. [PMID: 39998577 DOI: 10.1007/s00604-024-06932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/26/2024] [Indexed: 02/27/2025]
Abstract
A novel direct lysis method combined with amplification-free CRISPR/Cas12a-SERS genosensor was for the first time developed to rapidly and sensitively identify meat adulteration. Notably, polystyrene (PS) microspheres, with distinct shrinking and swelling properties, were dexterously employed to encapsulate biological-silent Raman reporter 4-mercaptobenzonitrile (4-MBN) and act as a controlled-release signal probe. Target DNA activated the trans-cleavage activity of CRISPR/Cas12a towards ssDNA linked with PS microsphere to liberate the signal probe, which was able to release numerous Raman reporters after treatment with THF solution, resulting in high signal amplification. Through this platform, trace target DNA was deftly transformed into a sensitive Raman signal and could be on-site determined through a portable Raman equipment. Under optimized conditions, this strategy displayed good linearity in the range 1-450 ng/μL (R2 = 0.9943) and favorable sensitivity with limit of detection as low as 0.23 ng/μL without any pre-amplification. Moreover, it exhibited good applicability to on-site identification of commercial meat samples in complicated food matrix. In addition, DNA extraction by direct lysis and amplification-free detection realized ultrafast meat adulteration determination within 35 min from sampling to result. This method possessed great potential in rapid and on-site accurate determination of meat authenticity.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yu Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xinyue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mingquan Huang
- Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China.
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
5
|
Yuan J, Wang L, He F, Huang L, He K, Wang H, Wang J, Xu X. Hue-change coupled with CRISPR-Cas12a lateral flow assay for the semiquantitative detection of Salmo salar adulteration. Food Chem 2025; 463:141088. [PMID: 39241431 DOI: 10.1016/j.foodchem.2024.141088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Salmo salar is one of the most popular salmon species due to its meaty texture and quality protein. Oncorhynchus mykiss, which has a muscle texture similar to that of Salmo salar and is less expensive, is often used as a substitute for Salmo salar. As Salmo salar and Oncorhynchus mykiss belong to the same subfamily of Salmonidae, traditional methods are ineffective in the specific detection of the two. In this study, we combined hue-change with CRISPR/Cas12a lateral flow assay to detect the Salmo salar adulteration. This method detected S. salar genomic DNA at a vLOD of 5 copies, and was able to accurately identify adulterated samples containing 5 % w/w Salmo salar within one hour. In addition, the detection of Salmo salar in processed food products was achieved with the naked-eye at a concentration range of 0 % ∼ 70 % w/w, and the detection accuracy is between 93.3 % ∼ 100 %.
Collapse
Affiliation(s)
- Jingrui Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
6
|
Qiao J, Zhao Z, Li Y, Lu M, Man S, Ye S, Zhang Q, Ma L. Recent advances of food safety detection by nucleic acid isothermal amplification integrated with CRISPR/Cas. Crit Rev Food Sci Nutr 2024; 64:12061-12082. [PMID: 37691410 DOI: 10.1080/10408398.2023.2246558] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Food safety problems have become one of the most important public health issues worldwide. Therefore, the development of rapid, effective and robust detection is of great importance. Amongst a range of methods, nucleic acid isothermal amplification (NAIA) plays a great role in food safety detection. However, the widespread application remains limited due to a few shortcomings. CRISPR/Cas system has emerged as a powerful tool in nucleic acid detection, which could be readily integrated with NAIA to improve the detection sensitivity, specificity, adaptability versatility and dependability. However, currently there was a lack of a comprehensive summary regarding the integration of NAIA and CRISPR/Cas in the field of food safety detection. In this review, the recent advances in food safety detection based on CRISPR/Cas-integrated NAIA were comprehensively reviewed. To begin with, the development of NAIA was summarized. Then, the types and working principles of CRISPR/Cas were introduced. The applications of the integration of NAIA and CRISPR/Cas for food safety were mainly introduced and objectively discussed. Lastly, current challenges and future opportunities were proposed. In summary, this technology is expected to become an important approach for food safety detection, leading to a safer and more reliable food industry.
Collapse
Affiliation(s)
- Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the, Chinese People's Liberation Army, Tianjin, China
| | - Qiang Zhang
- Branch of Tianjin Third Central Hospital, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
7
|
Li L, Li M, Wang S, Dong Y. Development of a CRISPR/Cas12a-facilitated fluorescent aptasensor for sensitive detection of small molecules. Int J Biol Macromol 2024; 280:136041. [PMID: 39341318 DOI: 10.1016/j.ijbiomac.2024.136041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The integration of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas) exhibits superior performance in biosensor construction. And the distinctive role of aptamers in target recognition has long been a focal point of research. Through the combination of Cas12a with cis-cleavage activity and aptamer with specific recognition, a simple and rapid fluorescent biosensor has been constructed. Interestingly, with modified fluorescent and quenching groups at two ends, aptamers play a dual role: primarily as the elements for target recognition and additionally functioning act as the fluorescent probe for signal output. Coupling with cis-cleavage of Cas12a, the demand of additional signal probes is eliminated, thus simplifying the reaction system and enhancing result accuracy. Taking okadaic acid (OA) as a representative small molecule model to evaluate the sensor's performance, a simple and straightforward detection method was established. Following this, the universality of the constructed fluorescent aptasensor was validated by incorporating an adenosine triphosphate (ATP) aptamer. Consequently, the CRISPR/Cas12a-assisted aptasensor was demonstrated to serve as a versatile detection platform for small molecules in food safety and clinical diagnostics. In the forthcoming research endeavors, it can be further extended for applications in environmental analysis and various other fields.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Menglei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
8
|
Wu G, Luo J, Du C, Zheng Z, Zhang Y, Luo P, Wu Y, Shen Y. AIE fluorescent nanozyme-based dual-mode biosensor for analysis of the bioactive component hypoxanthine in meat products. Food Chem 2024; 450:139242. [PMID: 38631208 DOI: 10.1016/j.foodchem.2024.139242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The development of facile, low-cost reliable, and precise onsite assays for the bioactive component hypoxanthine (Hx) in meat products is significant for safeguarding food safety and public health. Herein, we proposed a smartphone-assissted aggregation-induced emission (AIE) fluorogen tetraphenylethene (TPE)-incorporated amorphous Fe-doped phosphotungstates (Fe-Phos@TPE) nanozyme-based ratiometric fluorescence-colorimetric dual-mode biosensor for achieving the onsite visual detection of Hx. When the Hx existed, xanthine oxidase (XOD) catalyzed Hx into H2O2 to be further catalyzed into •OH by the prominent peroxidase activity of Fe-Phos@TPE at pH = 6.5, resulting in the oxidization of nonfluorescent o-phenylenediamine (OPD, naked-eye colorless) to be yellow fluorescent emissive 2,3-diaminophenazine (DAP, naked-eye dark yellow) at 550 nm as well as the intrinsic blue fluorescence of Fe-Phos@TPE at 440 nm to be decreased via inner-filter effect (IFE) action, thereby realizing a multi-enzyme cascade catalytic reaction at near-neutral pH to overcome the traditional acidity dependence-induced time-consuming and low sensitivity troublesome.
Collapse
Affiliation(s)
- Guojian Wu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Jiaqi Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxing Du
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yang Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Pengjie Luo
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
9
|
Jia W, Ferragina A, Hamill R, Koidis A. Modelling and numerical methods for identifying low-level adulteration in ground beef using near-infrared hyperspectral imaging (NIR-HSI). Talanta 2024; 276:126199. [PMID: 38714010 DOI: 10.1016/j.talanta.2024.126199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Owing to the inherent characteristics of ground beef, adulteration presents a substantial risk for suppliers and consumers alike. This study developed a robust and novel method for identifying replacement fraud in ground beef with beef liver, beef heart, and pork using Near Infrared-Hyperspectral Imaging (NIR-HSI) coupled with chemometric and other statistical methods. More specifically, NIR-HSI provided an efficient and accurate means of identifying each type of adulteration using the classification model Genetic Algorithm (GA) - Backpropagation Artificial Neural Network (BPANN), showing perfect sensitivity and specificity (a value of 1.00) for the calibration and the validation sets for all types of adulteration. As an alternative to chemometric analysis, Hyperspectral Imaging-Root Mean Square (HSI-RMS) value, based on the RMScut-off calculation, was determined to discriminate types of adulterations without the need of resource-intensive modelling. This HSI-RMS approach provides a simple-to-use method that avoids the complexity of HSI data processing and aims to directly understand the similarity between different spectra of one sample in the pixel level. Different types of adulteration show noticeable differences reflected in the HSI-RMS value (varying from 55 to 1439), which demonstrate the potential of HSI-RMS concept as a novel and valuable alternative for assessing the HSI data and facilitating the identification of adulterants.
Collapse
Affiliation(s)
- Wenyang Jia
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Alessandro Ferragina
- Teagasc Food Research Centre, Food Quality and Sensory Science Department, Dublin, Ireland
| | - Ruth Hamill
- Teagasc Food Research Centre, Food Quality and Sensory Science Department, Dublin, Ireland
| | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK.
| |
Collapse
|
10
|
Zhang X, Li Z, Wang X, Hong L, Yin X, Zhang Y, Hu B, Zheng Q, Cao J. CRISPR/Cas12a integrated electrochemiluminescence biosensor for pufferfish authenticity detection based on NiCo 2O 4 NCs@Au as a coreaction accelerator. Food Chem 2024; 445:138781. [PMID: 38401312 DOI: 10.1016/j.foodchem.2024.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Meat adulteration has brought economic losses, health risks, and religious concerns, making it a pressing global issue. Herein, combining the high amplification efficiency of polymerase chain reaction (PCR) and the accurate recognition of CRISPR/Cas12, a sensitive and reliable electrochemiluminescence (ECL) biosensor was developed for the detection of pufferfish authenticity using NiCo2O4 NCs@Au-ABEI as nanoemitters. In the presence of target DNA, the trans-cleavage activity of CRISPR/Cas12a is activated upon specific recognition by crRNA, and then it cleaves dopamine-modified single stranded DNA (ssDNA-DA), triggering the ECL signal from the "off" to "on" state. However, without target DNA, the trans-cleavage activity of CRISPR/Cas12a is silenced. By rationally designing corresponding primers and crRNA, the biosensor was applied to specific identification of four species of pufferfish. Furthermore, as low as 0.1 % (w/w) adulterate pufferfish in mixture samples could be detected. Overall, this work provides a simple, low-cost and sensitive approach to trace pufferfish adulteration.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xiuwen Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lin Hong
- Dalian Inspection and Testing Certification Technical Service Center, Dalian 116021, China
| | - Xinying Yin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Zhang
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
11
|
Hong S, Walker JN, Luong AT, Mathews J, Shields SWJ, Kuo YA, Chen YI, Nguyen TD, He Y, Nguyen AT, Ghimire ML, Kim MJ, Brodbelt JS, Yeh HC. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. NATURE NANOTECHNOLOGY 2024; 19:810-817. [PMID: 38351231 PMCID: PMC11864325 DOI: 10.1038/s41565-024-01612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/15/2024] [Indexed: 06/21/2024]
Abstract
Fluorescence resonance energy transfer (FRET) reporters are commonly used in the final stages of nucleic acid amplification tests to indicate the presence of nucleic acid targets, where fluorescence is restored by nucleases that cleave the FRET reporters. However, the need for dual labelling and purification during manufacturing contributes to the high cost of FRET reporters. Here we demonstrate a low-cost silver nanocluster reporter that does not rely on FRET as the on/off switching mechanism, but rather on a cluster transformation process that leads to fluorescence color change upon nuclease digestion. Notably, a 90 nm red shift in emission is observed upon reporter cleavage, a result unattainable by a simple donor-quencher FRET reporter. Electrospray ionization-mass spectrometry results suggest that the stoichiometric change of the silver nanoclusters from Ag13 (in the intact DNA host) to Ag10 (in the fragments) is probably responsible for the emission colour change observed after reporter digestion. Our results demonstrate that DNA-templated silver nanocluster probes can be versatile reporters for detecting nuclease activities and provide insights into the interactions between nucleases and metallo-DNA nanomaterials.
Collapse
Affiliation(s)
- Soonwoo Hong
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Aaron T Luong
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jonathan Mathews
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Samuel W J Shields
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Trung Duc Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yujie He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Anh-Thu Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Madhav L Ghimire
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | | | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|