1
|
Zhang Y, Zhao Y, Wang N, Wang H, Yang P, Zhai YJ, Hou L, Li W. Characterization of the Biosynthesis of Pimprinine-Type Indolyloxazoles Unravels an Unusual d-Configurational Substrate Metabolic Streamline. J Am Chem Soc 2025; 147:12866-12877. [PMID: 40178231 DOI: 10.1021/jacs.5c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Pimprinine-type indolyloxazole alkaloids (PIAs), originally discovered in Streptomyces, show a diverse range of important pharmaceutical and agricultural bioactivities, yet their biosynthesis remains unknown. Herein, we report the identification of the biosynthetic enzymes responsible for the formation of the indolyloxazole structure of PIAs from a rhizosphere-derived Streptomyces netropsis NZY3, which involves three key enzymes, PimA (GCN5-related N-acetyltransferase, GNAT), PimB (pyridoxal 5'-phosphate-dependent tryptophan racemase), and PimC (FeII/α-ketoglutarate-dependent dioxygenase, FeII/αKGD), notably by an unprecedented d-configurational substrate metabolic streamline. First, PimB acts as a gatekeeper to donate the d-tryptophan precursor for the PIA pathway from the l-tryptophan pool of primary metabolism. Subsequently, a unique d-tryptophan GNAT, PimA, catalyzes the formation of N-acyl d-tryptophan. Finally, another novel N-acyl d-tryptophan-specific FeII/αKGD, PimC, finishes the formation of an indolyloxazole structure through a proposed radical rearrangement-mediated ring closure mechanism, which is supported by a series of deuterium- and 18O-labeling experiments in vitro. PimC also catalyzes the formation of the trans-vinyl group containing shunt products 1a to 3a through an oxygen-rebound mechanism followed by dehydration and decarboxylation or a carbocation-involved decarboxylation pathway. Furthermore, comparative genomic mining reveals that PIA biosynthetic gene clusters (PIAs BGCs) are widely distributed in Actinobacteria and Myxobacteria, suggesting the potential for discovering new PIA-producing strains. This work expands our knowledge about the biosynthetic mechanisms of pharmaceutic-valued indolyloxazole alkaloids, laying an important foundation for their future production through synthetic biology and metabolic engineering strategies.
Collapse
Affiliation(s)
- Yuyang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yanni Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Ningning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Haoran Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Pan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Yi-Jie Zhai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Lukuan Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wenli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Zhang Y, Zhu M, Zhu Z, Zou Y, Liu X, Chen J. Sulfone derivatives containing an oxazole moiety as potential antibacterial agents: design, synthesis, antibacterial activity, and mechanism. PEST MANAGEMENT SCIENCE 2025; 81:1669-1682. [PMID: 39600171 DOI: 10.1002/ps.8573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Bacterial diseases in plants pose a serious threat to crop production, leading to substantial food loss every year. Prolonged and repeated use of a single antibacterial agent can promote resistance in pathogenic bacteria. Therefore, there is an urgent need to develop efficient antibacterial agents for the treatment of bacterial diseases. RESULTS Sulfone derivatives containing an oxazole moiety were designed and synthesized. Subsequently, their biological activities were evaluated. The half-maximal effective concentration (EC50) value of compound F10 against Xanthomonas oryzae pv. oryzicola (Xoc) was 1.1 mg/L, which was higher than those of commercial antibacterial agents, thiodiazole-copper (91.5 mg/L) and bismerthiazol (76.0 mg/L). The curative and protective effects of compound F10 against bacterial leaf streak in rice were 43.8% and 48.4%, respectively, at 200 mg/L, which were significantly superior to those of thiodiazole-copper (25.0% and 25.8%, respectively) and bismerthiazol (31.3% and 38.7%, respectively). Compound F10 inhibits Xoc by increasing the permeability of the cell membrane, inhibiting the production of extracellular polysaccharides, and affecting flagellar movement on the cell membrane. In addition, F10 reduces the pathogenicity of pathogenic bacteria, induces the accumulation of reactive oxygen species (ROS) in pathogenic bacteria, and produces adverse reactions. Compound F10 weakens bacterial pathogenicity by affecting the signal transduction of plant hormones, programmed cell death, and enhancing the ability to resist infection through the autoimmune response of rice. CONCLUSION Therefore, compound F10 can be used as a potential antibacterial agent in future applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Mei Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zongnan Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Li S, Mei Y, Jiang L, Yang X, Zeng W, Du Y. Oxazole and isoxazole-containing pharmaceuticals: targets, pharmacological activities, and their SAR studies. RSC Med Chem 2025:d4md00777h. [PMID: 40008190 PMCID: PMC11848632 DOI: 10.1039/d4md00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Oxazole, a five-membered aromatic heterocycle featuring a nitrogen and an oxygen atom separated by a carbon atom, and its isomer isoxazole, with directly attached oxygen and nitrogen atoms, have been pivotal in medicinal chemistry. Over the past few decades, the U.S. Food and Drug Administration (FDA) has approved more than 20 drugs containing these nuclei for various clinical conditions, including Tafamidis and Oxaprozin. Due to their unique physicochemical properties, these drugs often exhibit superior pharmacokinetic profiles and pharmacological effects compared to those with similar heterocycles. This review provides a comprehensive overview of all FDA-approved drugs containing oxazole and isoxazole nuclei, focusing on their pharmacological activities and structure-activity relationships.
Collapse
Affiliation(s)
- Shanshan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China +86 22 27406121
| | - Yiou Mei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China +86 22 27406121
| | - Luchen Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China +86 22 27406121
| | - Xueyan Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China +86 22 27406121
| | - Wei Zeng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China +86 22 27406121
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China +86 22 27406121
| |
Collapse
|
4
|
Liu JR, Jiang EY, Sukhbaatar O, Zhang WH, Zhang MZ, Yang GF, Gu YC. Natural and synthetic 5-(3'-indolyl)oxazoles: Biological activity, chemical synthesis and advanced molecules. Med Res Rev 2025; 45:97-143. [PMID: 39152525 DOI: 10.1002/med.22078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
5-(3'-Indolyl)oxazole moiety is a privileged heterocyclic scaffold, embedded in many biologically interesting natural products and potential therapeutic agents. Compounds containing this scaffold, whether from natural sources or synthesized, have demonstrated a wide array of biological activities. This has piqued the interest of synthetic chemists, leading to a large number of reported synthetic approaches to 5-(3'-indolyl)oxazole scaffold in recent years. In this review, we comprehensively overviewed the different biological activities and chemical synthetic methods for the 5-(3'-indolyl)oxazole scaffold reported in the literatures from 1963 to 2024. The focus of this study is to highlight the significance of 5-(3'-indolyl)oxazole derivatives as the lead compounds for the lead discovery of anticancer, pesticidal, antimicrobial, antiviral, antioxidant and anti-inflammatory agents, to summarize the synthetic methods for the 5-(3'-indolyl)oxazole scaffold. In addition, the reported mechanism of action of 5-(3'-indolyl)oxazoles and advanced molecules studied in animal models are also reviewed. Furthermore, this review offers perspectives on how 5-(3'-indolyl)oxazole scaffold as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Jing-Rui Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - En-Yu Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Otgonpurev Sukhbaatar
- Department of Chemistry, School of Applied Sciences, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire, UK
| |
Collapse
|
5
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
6
|
Wang W, Chen X, Ma J, Li W, Long Y. Activity of Streptomyces globosus OPF-9 against the important pathogen Alternaria longipes and biocontrol mechanisms revealed by multi-omic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106094. [PMID: 39277405 DOI: 10.1016/j.pestbp.2024.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Plant diseases caused by fungal pathogens represent main threats to the yield and quality of agricultural products, and Alternaria longipes is one of the most important pathogens in agricultural systems. Biological control is becoming increasingly prevalent in the management of plant diseases due to its environmental compatibility and sustainability. In the present study, a bacterial strain, designated as OPF-9, was shown to effectively inhibit the pathogen A. longipes, which was identified as Streptomyces globosus. The culture conditions for OPF-9 were optimized through a stepwise approach and the fermentation broth acquired displayed an excellent inhibitory activity against A. longipes in vitro and in vivo. Further investigations suggested that the fermentation broth exhibited strong stability under a range of adverse environmental conditions. To reveal the molecular bases of OPF-9 in inhibiting pathogens, the whole-genome sequencing and assembly were conducted on this strain. It showed that the genome size of OPF-9 was 7.668 Mb, containing a chromosome and two plasmids. Multiple clusters of secondary metabolite synthesis genes were identified by genome annotation analysis. In addition, the fermentation broth of strain OPF-9 was analyzed by LC-MS/MS non-target metabolomic assay and the activity of potential antifungal substances was determined. Among the five compounds evaluated, pyrogallol displayed the most pronounced inhibitory activity against A. longipes, which was found to effectively inhibit the mycelial growth of this pathogen. Overall, this study reported, for the first time, a strain of S. globosus that effectively inhibits A. longipes and revealed the underlying biocontrol mechanisms by genomic and metabolomic analyses.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xuetang Chen
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiling Ma
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
7
|
Xu D, Chi Y, He HW, Chen CY, Zhou H, Liu X, Xu G. Structural Simplification of Podophyllotoxin: Discovery of γ-Butyrolactone Derivatives as Novel Antiviral Agents for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18423-18433. [PMID: 39106460 DOI: 10.1021/acs.jafc.4c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Natural products are a valuable resource for the discovery of novel crop protection agents. A series of γ-butyrolactone derivatives, derived from the simplification of podophyllotoxin's structure, were synthesized and assessed for their efficacy against tobacco mosaic virus (TMV). Several derivatives exhibited notable antiviral properties, with compound 3g demonstrating the most potent in vivo anti-TMV activity. At 500 μg/mL, compound 3g achieved an inactivation effect of 87.8%, a protective effect of 71.7%, and a curative effect of 67.7%, surpassing the effectiveness of the commercial plant virucides ningnanmycin and ribavirin. Notably, the syn-diastereomer (syn-3g) exhibited superior antiviral activity compared to the anti-diastereomer (anti-3g). Mechanistic studies revealed that syn-3g could bind to the TMV coat protein and interfere with the self-assembly process of TMV particles. These findings indicate that compound 3g, with its simple chemical structure, could be a potential candidate for the development of novel antiviral agents for crop protection.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Chi
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong-Wei He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, Shanxi 044000, China
| | - Cai-Yun Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huan Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Zhou LM, Yang JF, Li HH, Chen W, Li YW, Zhu XL, Yang GF. Discovery of Novel Oxathiapiprolin Derivatives as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17649-17657. [PMID: 39047266 DOI: 10.1021/acs.jafc.4c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing-Fang Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hong-Hao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yi-Wen Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
9
|
Wei C, Zhao C, Li J, Li C, Song B, Song R. Innovative Arylimidazole-Fused Phytovirucides via Carbene-Catalyzed [3+4] Cycloaddition: Locking Viral Cell-To-Cell Movement by Out-Competing Virus Capsid-Host Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309343. [PMID: 38477505 PMCID: PMC11109656 DOI: 10.1002/advs.202309343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The control of potato virus Y (PVY) induced crop failure is a challengeable issue in agricultural chemistry. Although many anti-PVY agents are designed to focus on the functionally important coat protein (CP) of virus, how these drugs act on CP to inactivate viral pathogenicity, remains largely unknown. Herein, a PVY CP inhibitor -3j (S) is disclosed, which is accessed by developing unusually efficient (up to 99% yield) and chemo-selective (> 99:1 er in most cases) carbene-catalyzed [3+4] cycloaddition reactions. Compound -3j bears a unique arylimidazole-fused diazepine skeleton and shows chirality-preferred performance against PVY. In addition, -3j (S) as a mediator allows ARG191 (R191) of CP to be identified as a key amino acid site responsible for intercellular movement of virions. R191 is further demonstrated to be critical for the interaction between PVY CP and the plant functional protein NtCPIP, enabling virions to cross plasmodesmata. This key step can be significantly inhibited through bonding with the -3j (S) to further impair pathogenic behaviors involving systemic infection and particle assembly. The study reveals the in-depth mechanism of action of antiviral agents targeting PVY CP, and contributes to new drug structures and synthetic strategies for PVY management.
Collapse
Affiliation(s)
- Chunle Wei
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunni Zhao
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Jiao Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunyi Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Baoan Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Runjiang Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| |
Collapse
|
10
|
Li ZX, Ding Y, Zhang TH, Hu JH, Luo RS, Zhou X, Liu LW, Yang S. Identification of Novel Bisamide-Decorated Benzotriazole Derivatives as Anti-Phytopathogenic Virus Agents: Bioactivity Evaluation and Computational Simulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6900-6912. [PMID: 38513076 DOI: 10.1021/acs.jafc.3c06806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
As a notorious phytopathogenic virus, the tobacco mosaic virus (TMV) severely reduced the quality of crops worldwide and caused critical constraints on agricultural production. The development of novel virucides is a persuasive strategy to address this predicament. Herein, a series of novel bisamide-decorated benzotriazole derivatives were elaborately prepared and screened. Biological tests implied that the optimized compound 7d possessed the most brilliant antiviral inactive profile (EC50 = 157.6 μg/mL) and apparently surpassed that of commercial ribavirin (EC50 = 442.1 μg/mL) 2.8-fold. The preliminary antiviral mechanism was elaborately investigated via transmission electron microscopy, microscale thermophoresis (MST) determination, RT-qPCR, and Western blot analysis. The results showed that compound 7d blocked the assembly of TMV by binding with coat protein (Kd = 0.7 μM) and suppressed TMV coat protein gene expression and biosynthesis process. Computational simulations indicated that 7d displayed strong H-bonds and pi interactions with TMV coat protein, affording a lower binding energy (ΔGbind = -17.8 kcal/mol) compared with Ribavirin (ΔGbind = -10.7 kcal/mol). Overall, current results present a valuable perception of bisamide decorated benzotriazole derivatives with appreciably virustatic competence and should be profoundly developed as virucidal candidates in agrochemical.
Collapse
Affiliation(s)
- Zhen-Xing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin-Hong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Yuan C, Tian J, Zhou Q, Xin H, Liu Y, Deng T, Zeng W, Sun Z, Xue W. Myricetin derivatives containing the benzoxazinone moiety discovered as potential anti-tobacco mosaic virus agents. Fitoterapia 2024; 173:105812. [PMID: 38168568 DOI: 10.1016/j.fitote.2023.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
A series of myricetin derivatives containing benzoxazinone were designed and synthesized. The structures of all compounds were characterized by NMR and HRMS. The structure of Y4 had been confirmed by single-crystal X-ray diffraction analysis. The test results of EC50 values of tobacco mosaic virus (TMV) suggested that Y8 had the best curative and protective effects, with EC50 values of 236.8, 206.0 μg/mL, respectively, which were higher than that of ningnanmycin (372.4, 360.6 μg/mL). Microscale thermophoresis (MST) experiments demonstrated that Y8 possessed a strong binding affinity for tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (Kd) value of 0.045 μM, which was superior to the ningnanmycin (0.700 μM). The findings of molecular docking studies revealed that Y8 interacted with multiple amino acid residues of TMV-CP through the formation of non-covalent bonds, which had an effect on the self-assembly of TMV particles. The malondialdehyde (MDA) and superoxide dismutase assay (SOD) content assays also fully verified that Y8 could stimulate the plant immune system and enhance disease resistance by reducing MDA content and increasing SOD content. In summary, myricetin derivatives containing benzoxazinone could be considered to further research and development as novel antiviral agents.
Collapse
Affiliation(s)
- Chunmei Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Tian
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Xin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yi Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tianyu Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhilin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
12
|
Huang BB, Gao MW, Li G, Ouyang MA, Chen QJ. Design, Synthesis, Structure-Activity Relationship, and Three-Dimensional Quantitative Structure-Activity Relationship of Fusarium Acid Derivatives and Analogues as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18566-18577. [PMID: 37971433 DOI: 10.1021/acs.jafc.3c04720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In research related to fungicides, the development of compounds from natural products with high antifungal activity has attracted considerable attention. Fusaric acid (FA), an alkaloid isolated from the metabolites of Fusarium oxysporum, is an important precursor for developing pharmacologically active herbicides. In our previous work, we reported that FA has a wide range of inhibitory activities against 14 plant pathogenic fungi. In particular, it exhibited excellent antifugal effects on Colletotrichum higginsianum (EC50 = 31.7 μg/mL). Herein, to explore the practical application in the agricultural field, the design and synthesis of three series of FA derivatives and their inhibitory activities against plant pathogenic fungi were examined. Results demonstrated that the optimized FA derivatives had excellent inhibitory activities against C. higginsianum, Helminthosporium (Harpophora maydis), and Pyricularia grisea. In particular, the inhibitory activities were considerably improved when the 5-butyl groups of FA were substituted. The EC50 of C. higginsianum and P. grisea was only 1.2 and 12.0 μg/mL when 5-butylalkyl groups were substituted with 5-([1,1'-biphenyl]-4-yl) and 5-phenyl, respectively. Moreover, the safety index of target compounds, which was obtained from the treatment index of medicines, on rice seeds was evaluated. Finally, 16 leading compounds (H4, H22-H24, H27, H29, H30-H34, H37, H45, H50, H52, and H53) were obtained; they had considerable potential for additional modification and optimization as agricultural fungicides. Moreover, three-dimensional quantitative structure-activity relationship models were developed for obtaining a systematic structure-activity relationship profile to explore the possibility of more potent FA derivatives as novel fungicides.
Collapse
Affiliation(s)
- Bin Bin Huang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ming Wei Gao
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Guo Li
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ming-An Ouyang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Qi-Jian Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
13
|
Xue F, Yang CJ, Tang T, He Z. Sequential annulation and isomerisation reaction of 3-acylmethylidene oxindoles with Huisgen zwitterions and synthesis of 5-(3-oxindolyl)oxazoles. Org Biomol Chem 2023; 21:8176-8181. [PMID: 37786314 DOI: 10.1039/d3ob01199b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein, we report a facile synthesis of 5-(3-oxindolyl)oxazole derivatives via a sequential annulation and isomerisation reaction of 3-acylmethylidene oxindoles with in situ generated Huisgen zwitterions (HZs) from PPh3 and azodicarboxylates. This reaction exhibits good functional group tolerance with 30 examples of structurally diverse products prepared with moderate to good efficiencies (up to 88% yield), thus providing a generally applicable route to the biologically important 5-(3-indolyl)oxazole structural motifs. Key to the success of this sequential one-pot strategy is the utilization of DBU as a base to promote the isomerisation process of the corresponding intermediate annulation products.
Collapse
Affiliation(s)
- Feixue Xue
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | - Chang-Jiang Yang
- Department of Chemistry, School of Sciences, Great Bay University, Dongguan 523000, China
- The Dongguan Key Laboratory for Data Science and Intelligent Medicine, Dongguan 523000, China.
| | - Tong Tang
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | - Zhengjie He
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| |
Collapse
|