1
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
2
|
Zou Y, Zhu M, Zhu Z, Du T, Liu X, Jiang Y, Chen J. Discovery of Novel Antibacterial Agents against Plant Pathogens: Design, Synthesis, Antibacterial Activity, and Mechanism of Action of 1,2,4-Thiadiazole Derivatives Containing a Sulfone Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4534-4543. [PMID: 39943793 DOI: 10.1021/acs.jafc.4c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
1,2,4-Thiadiazole derivatives containing a sulfone moiety were designed and synthesized via scaffold hopping to facilitate the discovery of novel antibacterial agents. Most of the compounds exhibited excellent activity against three plant pathogenic bacteria. The half-maximal effective concentrations (EC50) of compound B7 for Xanthomonas oryzae pv oryzae (Xoo) and X. oryzae pv oryzicola (Xoc) concentrations were 0.4 and 1.0 mg/L, respectively. In addition, the EC50 values of compounds B1 and B24 for Xoo, Xoc, and Pseudomonas syringae pv actinidiae (Psa) were less than 5 mg/L and significantly better than those of the positive control agents thiodiazole copper (121.8, 119.5, and 142.0 mg/L, respectively) and bismerthiazol (73.3, 65.6, and 128.8 mg/L, respectively). Compound B7 exhibited protective and curative activities of 48.1 and 46.7%, respectively, against bacterial leaf blight, which were higher than those of bismerthiazol (35.5 and 36.9%, respectively) and thiodiazole copper (39.3 and 39.5%, respectively). Additionally, compound B7 exerted an effect on the virulence factors of Xoo (production of exopolysaccharides and extracellular enzymes, biofilm formation, and motility), membrane permeability, cell surface morphology, and intracellular content of reactive oxygen species. Transcriptome analysis showed that compound B7 improved the resistance of rice plants to external stress by influencing the metabolic process, biological regulation, catalytic activity of enzymes, and plant-pathogen interaction. Compound B7 can therefore be considered as a potential candidate antibacterial agent and warrants an in-depth investigation in the future.
Collapse
Affiliation(s)
- Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zongnan Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingting Du
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yaojia Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wang WH, Li ZR, Zhu DX, Chen JY, Zhou Y, Li CP, Shao LH, Qiu XM, Zhu M, Long HT, Chen DP, Ouyang GP, Rong ZQ, Wang ZC. Design, synthesis, antibacterial evaluation of isopropylamine linked with different substituted phenol and piperazine novel derivatives. PEST MANAGEMENT SCIENCE 2024; 80:2710-2723. [PMID: 38358029 DOI: 10.1002/ps.7986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) is often considered one of the most destructive bacterial pathogens causing bacterial leaf blight (BLB), resulting in significant yield and cost losses in rice. In this study, a series of novel derivatives containing the isopropanolamine moiety linked to various substituted phenols and piperazines were designed, synthesized and screened. RESULTS Antibacterial activity results showed that most compounds had good inhibitory effects on Xoo, among which compound W2 (EC50 = 2.74 μg mL-1) exhibited the most excellent inhibitory activity, and W2 also had a certain curative effect (35.89%) on rice compared to thiodiazole copper (TC) (21.57%). Scanning electron microscopy (SEM) results indicated that compound W2 could cause rupture of the Xoo cell membrane. Subsequently, proteomics and quantitative real-time polymerase chain reaction revealed that compound W2 affected the physiological processes of Xoo and may exert antibacterial activity by targeting the two-component system pathway. Interestingly, W2 upregulated Xoo's methyltransferase to impact on its pathogenicity. CONCLUSION The present study offers a promising phenolic-piperazine-sopropanolamine compound as an innovative antibacterial strategy by specifically targeting the two-component system pathway and inducing upregulation of methyltransferase to effectively impact Xoo's pathogenicity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Hang Wang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Zhu-Rui Li
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Dan-Xue Zhu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Jia-Yi Chen
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Yue Zhou
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Cheng-Peng Li
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Li-Hui Shao
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Xue-Mei Qiu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Mei Zhu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Hai-Tao Long
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, People's Republic of China
| | - Dan-Ping Chen
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, People's Republic of China
| | - Gui-Ping Ouyang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), Xi'an, People's Republic of China
| | - Zhen-Chao Wang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, People's Republic of China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
4
|
Chen M, Cheng S, Dai X, Yu J, Wang H, Xu B, Luo H, Xu G. Design, Synthesis, and Biological Evaluation of Novel Quinazoline Derivatives Possessing a Trifluoromethyl Moiety as Potential Antitumor Agents. Chem Biodivers 2024; 21:e202301776. [PMID: 38602834 DOI: 10.1002/cbdv.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 μM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.
Collapse
Affiliation(s)
- Mingxiu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xing Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - HuiDi Wang
- The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - BiXue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| |
Collapse
|
5
|
Chai WM, Bai Q, Pan Q, Wang L, Zhu D. 6,7-Bis-(2-methoxyethoxy)-4(3H)-quinazolinone as a novel inhibitor of tyrosinase and potential anti-browning agent of fresh-cut apples. J Biosci Bioeng 2024; 137:165-172. [PMID: 38212152 DOI: 10.1016/j.jbiosc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
6,7-Bis-(2-methoxyethoxy)-4(3H)-quinazolinone (BMEQ) was selected from quinazolinones for its strong tyrosinase inhibitory activity (IC50 = 160 ± 6 μM). It suppressed tyrosinase activity in a competitive way and quenched the fluorescence of the enzyme through a static mechanism. The binding of BMEQ to tyrosinase increased the hydrophobicity of the latter and facilitated non-radiative energy transfer between them. The formation of BMEQ-tyrosinase complex was driven by hydrogen bonds and hydrophobic interactions, and it loosened the basic framework structure of tyrosinase, affecting the conformation of the enzyme, and leading to a decrease in tyrosinase activity. In addition, the BMEQ postponed the oxidation of phenolics and flavonoids by inhibiting polyphenol oxidase (PPO) and peroxidase (POD), which resulted in the inhibition of the browning of fresh-cut apples. This study identified a novel tyrosinase inhibitor BMEQ and verified its potential application for improving the preservation of postharvest fruits.
Collapse
Affiliation(s)
- Wei-Ming Chai
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Functional Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China; College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiuhan Bai
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qiuxia Pan
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Linjun Wang
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Du Zhu
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Functional Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, China; College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
6
|
Huang S, Jin L, Liu Y, Yang G, Wang A, Le Z, Jiang G, Xie Z. Visible light-mediated synthesis of quinazolinones from benzyl bromides and 2-aminobenzamides without using any photocatalyst or additive. Org Biomol Chem 2024; 22:784-789. [PMID: 38168690 DOI: 10.1039/d3ob01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This paper reports a novel method for the visible-light-mediated synthesis of quinazolinones from the reaction of benzyl bromides with 2-aminobenzamides. The reaction proceeded efficiently at room temperature upon irradiation with an 18 W blue light-emitting diode in air without photocatalysts or additives. By varying the solvent type, substrate molar ratio, and reaction time, the optimal reaction conditions, including the use of methanol solvent, room temperature, and reaction time of 28 h, were identified. Under these conditions, various quinazolinones were obtained using 18 substrates, with the highest yield of 93%. To determine the industrial value of the proposed method, a scale-up reaction was performed and 80% product yield was achieved. Mechanistic studies revealed that the reaction likely proceeded via a radical pathway and that the hydrogen bromide by-product generated during the first step of the reaction of benzyl bromide with 2-aminobenzamide promoted the subsequent step.
Collapse
Affiliation(s)
- Sheng Huang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yufeng Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guoping Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Aixin Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guofang Jiang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|