1
|
Wang Y, Liu Y, Liang X, Liu Z, Yang Y. A colorimetric/SERS dual-mode sensor based on ferric ion-dopamine@Au-Ag-Au Janus NPs for acrylamide determination in baked goods. Mikrochim Acta 2025; 192:193. [PMID: 40011275 DOI: 10.1007/s00604-025-07051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
This study successfully developed a colorimetric/SERS dual-mode sensor for determining acrylamide in baked goods based on the excellent peroxidase-like activity and Raman activity of Fe-PHS@Au-Ag-Au Janus NPs. In colorimetric mode, the thiol-ene Michael addition between acrylamide (AA) and glutathione (GSH) efficiently eliminates GSH-induced peroxidase-like activity inhibition. The peroxidase-like activity of Fe-PHS@Au-Ag-Au Janus NPs gradually recovered, and the blue color of the solution gradually deepened with the increase in AA dosage. In surface-enhanced Raman spectroscopy (SERS), Apt-Fe-PHS@Au-Ag-Au Janus NPs can selectively capture AA and bind specifically, leading to the dissociation of Apt and Fe-PHS@Au-Ag-Au Janus NPs. The Raman activity of Apt-Fe-PHS@Au-Ag-Au Janus NPs decreases due to the dissociation of Apt. The dual-mode sensor was utilized for the determination of acrylamide in the concentrations range from 0.05 to 20 µg·L-1 with detection limits of 0.06 µg·L-1 (SERS) and 0.01 µg·L-1 (colorimetric). The recovery in baked samples was between 91.0 and 108.0%.
Collapse
Affiliation(s)
- Yutong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yizhi Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
- Sinopharm Kunming Plasma-Derived Biotherapies Co., Ltd, Kunming, China
| | - Xiao Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Zhiyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
2
|
Wang Y, Zeng Y, Ren X, Qiu J, Pan J, Yang F. A probe-mediated fluorescent biosensor for MC-LR detection using exonuclease III as a signal amplifier. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1834-1839. [PMID: 39902730 DOI: 10.1039/d4ay02027h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Microcystin-lr (MC-LR) is one of the most toxic and ubiquitous microcystins (MCs) released by cyanobacteria. Exposure to MC-LR can cause multiple organ damage and even death of the organism. Therefore, creating highly sensitive and dependable methods for detecting trace MC-LR is crucial. Herein, we developed a novel fluorescence aptasensor aided by exonuclease III (Exo III) for the highly sensitive detection of MC-LR. In the presence of MC-LR, the affinity interaction between MC-LR and aptamer A was triggered, leading to the release of blocker B. This unbound blocker can initiate Exo III-mediated signal amplification to digest the probe H, thereby recovering the fluorescence signal for readout. The proposed Exo III-assisted sensing platform demonstrated remarkable sensitivity and selectivity, achieving a limit of detection (LOD) of 0.37 ng L-1. Furthermore, it is robust and has been effectively utilized on water samples, achieving acceptable recovery rates (95.04-107.01%). With excellent sensitivity, high selectivity, efficient signal amplification, and fluorescence readout, the proposed biosensor offered a new and reliable alternative for the detection of trace MC-LR in the environment and the early warning of algal toxins.
Collapse
Affiliation(s)
- Yuyan Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ying Zeng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China
| | - Jiafeng Pan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Wang Y, Liang X, Yang Y. A SERS "on-off" sensor for Hg 2+ and fumonisin B1 determination in grains based on Au-Janus Ag NPs modified by carbon dots. Mikrochim Acta 2025; 192:172. [PMID: 39966187 DOI: 10.1007/s00604-025-07038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Se-WCDs-Au-Janus Ag NPs with weak oxidase activity were synthesized using Se-W carbon dots (Se-WCDs) as stabilizers and reducing agents. These Janus nanoparticles (Janus NPs) effectively catalyze the reduction of mercury ions (Hg2+) to metallic mercury (Hg0), generating Au-Ag-Hg mercury alloys (Au-Ag@HgNPs). The aggregated Au-Ag@HgNPs on the nanoparticles improve the SERS activity of Se-WCDs-Au-Janus Ag NPs through a synergistic effect of electromagnetic enhancement and chemical enhancement. Interestingly, adding FB1 turns off the Raman signal by inhibiting the aggregation of Au-Ag@HgNPs. Based on these findings, a SERS "on-off" sensor utilizing the Se-WCDs-Au-Janus Ag NPs as the probe was successfully developed to determine fumonisin B1 (FB1) and Hg2+ in grains. The detection limits were as low as 0.005 μg·L-1 for Hg2+ and 0.006 μg·L-1 for FB1.
Collapse
Affiliation(s)
- Yutong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Xiao Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
4
|
Jiao T, Dong C, Zhu A, Ahmad W, Peng L, Wu X, Chen Q, Wei J, Chen X, Qin O, Chen Q. AFB1-responsive mesoporous silica nanoparticles for AFB1 quantification based on aptamer-regulated release of SERS reporter. Food Chem 2025; 463:141417. [PMID: 39388875 DOI: 10.1016/j.foodchem.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/14/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
In this study, we propose a novel surface-enhanced Raman scattering (SERS) method for quantifying aflatoxin B1 (AFB1). This method relies on the target-triggered release of a SERS reporter from aptamer-sealed aminated mesoporous silica nanoparticles (MSNs). These MSNs were synthesized to accommodate 4-mercaptophenylboronic acid (4-MPBA) within their well-defined micropores, which were subsequently sealed with AFB1 aptamers. Upon specific binding of AFB1 to its aptamer, the conformational change in the aptamer is regulated by the presence of the target. Consequently, a positive linear relationship between the AFB1 concentration and the 4-MPBA SERS signal was observed. Under optimal conditions, the method exhibited a good linear relationship over the range of 0.1 to 5 ng/mL AFB1, with a limit of detection (LOD) of 0.03 ng/mL. This strategy was validated using wheat samples, yielding results comparable to high performance liquid chromatography-fluorescence detector (P > 0.05), confirming its reliability for detecting AFB1 in complex food matrices.
Collapse
Affiliation(s)
- Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Chenggang Dong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaoxiao Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Ouyang Qin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
5
|
Zhang C, Sun Y, Zhang X, Li Y, Liu Z, Yang S, Jiang D, Wang J, Jin B, Zhang Y, Yang K. High sensitivity chemiluminescence enzyme immunoassay for detecting staphylococcal enterotoxin C1 and its application in multi-matrices. Heliyon 2024; 10:e40675. [PMID: 39687106 PMCID: PMC11648755 DOI: 10.1016/j.heliyon.2024.e40675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Staphylococcal enterotoxins (SEs) serve as the primary cause of staphylococcal food poisoning and other foodborne intoxications. Among them, staphylococcal enterotoxin C (SEC) has the highest prevalence in dairy products, leading to multiple outbreaks all around the world. Thus, it is of great significance to develop a highly sensitive, highly specific and easy to operate chemiluminescent sandwich enzyme immunoassay (CLEIA) for detecting staphylococcal enterotoxin C (SEC1). We selected two pairs of anti-SEC1 monoclonal antibodies (mAbs) (SEC1-G8 and SEC1-C4), and a chemiluminescent sandwich enzyme immunoassay (CLEIA) was constructed. This approach can detect SEC1 within a concentration spectrum of 3.2-4000 pg/mL, with the detection limit being 2.1 pg/mL. At three concentrations (3.2, 20, and 400 pg/mL), both the intra- and inter-assay coefficient variations were coming in at 6.31 % and 11.2 % respectively. No cross-reaction was noticed in the SEA, SEB, and SED tests. SEC1 was successfully detected by employing the CLEIA method in spiked matrices and commercial samples, and the average recovery rate ranges from 81.6 % to 108.1 %. Therefore, the highly sensitive, SEC1- specific, and easy-to-operate CLEIA could be a useful tool in the near future for quantifying SEC1 in public health and food safety.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yongming Li
- Laboratory Department, Affiliated Hospital of Army Medical University NCO School, Shijiazhuang, China
| | - Zhijia Liu
- Department of Urology, The Eighth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Fu X, Yin L, Zhang Y, Zhou R, El-Seedi HR, Zou X, Gong Y, Guo Z. SERS aptasensor detection of aflatoxin B1 based on silicon-au-ag Janus nanocomposites. Food Chem 2024; 467:142325. [PMID: 39644659 DOI: 10.1016/j.foodchem.2024.142325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Aflatoxin B1 (AFB1) is a prevalent contaminant in maize, posing significant threats to human health. This study designed AuAg Janus NPs with intrinsic Raman signals as signal probes and SiO2@AgNPs as capture probes. The two were coupled through complementary base pairing to ensure the ordered, controlled distribution of noble metal nanoparticles. The AuAg Janus NPs and the highly stable SiO2 carrier is expected to avoid the adverse effects on stability caused by using signal molecules and the formation of random aggregates when using the noble metal nanoparticle gap effect to concentrate on the electromagnetic field. This study improved the negative impact of AgNPs' high surface energy on their uniformity, while enhancing the pH adaptability of AuAg Janus NPs. In the presence of AFB1, the composite disintegrates, and the SERS intensity showed a negative correlation with AFB1 concentration, enabling highly sensitive and stable detection of AFB1.
Collapse
Affiliation(s)
- Xuan Fu
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China; Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, SE, 751 24 Uppsala, Sweden
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
7
|
Wang X, Hou J, Chen C, Jia Z, Zuo E, Chang C, Huang Y, Chen C, Lv X. Non-invasive detection of systemic lupus erythematosus using SERS serum detection technology and deep learning algorithms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124592. [PMID: 38861826 DOI: 10.1016/j.saa.2024.124592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple symptoms, and its rapid screening is the research focus of surface-enhanced Raman scattering (SERS) technology. In this study, gold@silver-porous silicon (Au@Ag-PSi) composite substrates were synthesized by electrochemical etching and in-situ reduction methods, which showed excellent sensitivity and accuracy in the detection of rhodamine 6G (R6G) and serum from SLE patients. SERS technology was combined with deep learning algorithms to model serum features using selected CNN, AlexNet, and RF models. 92 % accuracy was achieved in classifying SLE patients by CNN models, and the reliability of these models in accurately identifying sera was verified by ROC curve analysis. This study highlights the great potential of Au@Ag-PSi substrate in SERS detection and introduces a novel deep learning approach for SERS for accurate screening of SLE. The proposed method and composite substrate provide significant value for rapid, accurate, and noninvasive SLE screening and provide insights into SERS-based diagnostic techniques.
Collapse
Affiliation(s)
- Xuehua Wang
- College of Physical Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Junwei Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Zhenhong Jia
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Enguang Zuo
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Chenjie Chang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Yuhao Huang
- College of Software, Xinjiang University, Urumqi 830046, China.
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi 830046, China.
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
8
|
Wu GF, Zhu J, Weng GJ, Cai HY, Li JJ, Zhao JW. Morphology and optical properties of Au-Ag hybrid nanoparticles regulation and its ultra-sensitive SERS immunoassay detection in carbohydrate antigen 19-9. Talanta 2024; 275:126131. [PMID: 38663064 DOI: 10.1016/j.talanta.2024.126131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
The development of an ultra-sensitive detection method for carbohydrate antigen 19-9 (CA19-9) is very important for the early diagnosis of pancreatic cancer. In this work, we developed a new strategy to achieve a variety of Au-Ag hybrid nanoparticles from janus to core-satellite which is controlled by the volume of AgNO3 and the concentration of benzimidazolecarboxylic acid (MBIA). With the volume of AgNO3 increased, Au-Ag hybrid nanoparticles changed from janus to core-satellite and the characteristic absorption peak showed two opposite trends. The size and number of Ag islands were determined by the concentration of MBIA. Au-Ag core-satellites nanoparticles with a large number of small-sized Ag have the highest SERS intensity. Then we used them as SERS nanotags and Au-Polystyrene nanospheres modified by captured anti-CA19-9 antibody as solid substrates to realize the ultra-sensitive detection of CA19-9 with a low limit of detection of 1.25 × 10-6 IU/mL and a wide linear range of 1.00 × 10-5 -1.00 × 104 IU/mL. This work not only demonstrates that MBIA and AgNO3 were the key factors in the growth of Au-Ag hybrid nanoparticles from 2D to 3D structure but also supplies an ultra-sensitive detection method for CA19-9 which has a potential practicability in the clinical early diagnoses of pancreatic cancer.
Collapse
Affiliation(s)
- Gao-Feng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hao-Yu Cai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
9
|
Hao HL, Zhu J, Weng GJ, Li JJ, Guo YB, Zhao JW. Exclusive Core-Janus Satellite Assembly Based on Au-Ag Janus Self-Aligned Distributions with Abundant Hotspots for Ultrasensitive Detection of CA19-9. ACS Sens 2024; 9:942-954. [PMID: 38295764 DOI: 10.1021/acssensors.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of surface-enhanced Raman scattering (SERS) probes with high sensitivity and stability is imminent to improve the accuracy of cancer diagnosis. Here, an exclusive core-Janus satellite (CJS) assembly was constructed by a hierarchical assembly strategy in which the Au-Ag Janus satellite is vertically self-aligned on the core surface. In the process, a silica shell template was ingeniously employed to asymmetrically mask the presatellites for the in situ formation of the Janus structure, and a series of Janus satellites with different morphologies were developed by regulating the encapsulated area of the presatellites. The ordered-oriented arrangement of Au-Ag Janus and unique heterojunction morphology permit CJS assemblies, featuring two types of plasmonic nanogaps, including intrananocrevices for individual Janus and internanogaps between neighboring Janus, thereby multiplying the "hotspots" compared to conventional core-monotonous satellites, which contributes to superior SERS activity. As anticipated, the enhancement factor of CJS assemblies was as high as 3.8 × 108. Moreover, it is intriguing that the directional distribution and head physically immobilized by Janus provided uniform and stable SERS signals. The SERS probe based on the CJS assembly for the detection of carbohydrate antigen 19-9 resulted in an ultrahigh sensitivity with a limit of detection of 3.7 × 10-5 IU·mL-1, which is nearly 10 times lower than other SERS probes, and a wide detection range of 3 × 10-5 to 1 × 104 IU·mL-1. The CJS assembly with excellent SERS performance is promising to advance further development of the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Li Hao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|