1
|
Li S, Guo J, Li H, Hao D. Involvement of a novel cytochrome P450 CYP6HX3 from a specialist herbivore, Pagiophloeus tsushimanus, in the metabolism of host-plant terpenoids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106366. [PMID: 40262863 DOI: 10.1016/j.pestbp.2025.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Cytochromes P450 have been confirmed to be involved in plant terpenoid biosynthesis and the degradation and metabolism of exogenous terpenoids in herbivorous organisms. Nevertheless, the underlying molecular mechanisms of P450-mediated terpenoid metabolism in numerous non-model insects remain largely unclear, which impedes our understanding of the chemical interactions between plants and insects. Herein, we identified a novel P450 gene belonging to CYP6 family, designated as CYP6HX3, from a specialist herbivore on camphor trees, Pagiophloeus tsushimanus. CYP6HX3 transcripts were constitutively abundant in the gut and fat body of larvae, and its expression in various tissues (except for head) was significantly induced by specific terpenoids in camphor trees (D-camphor, linalool, and eucalyptol) to varying degrees. Additionally, the CYP6HX3 protein model was constructed accurately, and it could stably bind to the three terpenoid molecules mainly via hydrophobic forces. The capability of CYP6HX3 to metabolize the three terpenoids was verified using metabolic assays in vitro, and this monooxygenase catalyzed the epoxidation of linalool to (R/S)-furanoid-linalool oxide. These results will enhance our understanding of insect metabolic resistance to natural chemicals and offer new targets for pest management.
Collapse
Affiliation(s)
- Shouyin Li
- Key Laboratory of State Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing Police University, Nanjing, Jiangsu 210023, China
| | - Jinyan Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
Yang S, Yuan Y, Zhang X, Zou Y, Yao P, Ye D, Ye L, Zhang X, Li J. Responses of biological characteristics and detoxification enzymes in the fall armyworm to methoxyfenozide stress. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:846-857. [PMID: 39832257 DOI: 10.1093/jee/toaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Methoxyfenozide is an insecticide with a unique mode of action on the insect ecdysone receptor and has been registered for the control of insect pests all over the world. In the present work, Spodoptera frugiperda was exposed to sublethal and lethal concentrations of methoxyfenozide to determine its impact on specific biological traits, metabolic enzyme activity, and the expression of detoxification enzymes. The result showed that 72-h posttreatment with LC50 and LC70 of methoxyfenozide significantly reduced the fecundity (eggs/female) of the F0 generation compared to those of the control group. However, the duration of the prepupal period was significantly increased. The exposure to LC10, LC30, LC50, and LC70 concentrations of methoxyfenozide significantly extended the developmental duration of larvae in F1 individuals. The fecundity of the F1 generation was significantly decreased, and the population life table parameters of F1 were also significantly affected. The activity of carboxylesterases showed little significant change, whereas the activity of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) was significantly altered after exposure to LC10, LC30, LC50, and LC70 of methoxyfenozide. In total, 24-, 48-, and 96-h posttreatment with LC10, LC30, LC50, and LC70 of methoxyfenozide could cause upregulation of P450 genes such as CYP6AE44, CYP6B39, CYP9A26, CYP9A58, CYP9A59, and CYP9A60, as well as GST genes including GSTe3, GSTe9, GSTe10, GSTe15, GSTo2, GSTs1, GSTs5, GSTm2, and GSTm3. These findings could be instrumental in elucidating the molecular mechanisms underlying the sublethal and lethal effects of methoxyfenozide to S. frugiperda.
Collapse
Affiliation(s)
- Shuqi Yang
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Yue Yuan
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Xiongwei Zhang
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Yaqin Zou
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Pan Yao
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Danni Ye
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Liutong Ye
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Xiaolei Zhang
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| | - Junkai Li
- Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China
- College of Agriculture, Yangtze University, Jingzhou 434000, PR China
| |
Collapse
|
3
|
Han H, Li MG, Xing KY, Wang Q, Hu J, Zhao ZG, Yu Q, Ma RY, Gao LL, Guo YQ. Molecular identification of three cytochrome P450 genes and their potential roles in insecticides tolerance in Grapholita molesta (Busck). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106247. [PMID: 40015843 DOI: 10.1016/j.pestbp.2024.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
The oriental fruit moth, Grapholita molesta (Busck), is a significant pest of Rosaceae trees worldwide and has developed resistance to various insecticides. Cytochrome P450 play a major role in detoxification of resistance to insecticides in insects. In this study, we found that Piperonyl butoxide (PBO), which inhibits the P450 activity, synergized with abamectin, imidacloprid, and L-cyhalothrin, increasing mortality rates of G. molesta by 43.04 %, 31.66 %, and 59.09 %, respectively. Using previously constructed transcriptome data from G. molesta treated with these three insecticides, we identified and cloned three new cytochrome P450 genes-CYP4L57 (OR027029), CYP9A114 (OR027031), and CYP9A203 (OR027030). These genes were highly expressed in adults, with CYP4L57 showing a 123.90-fold increase, CYP9A114 a 43.89-fold increase, and CYP9A203 a 1498.99-fold increase compared to egg stages. Tissue-specific expression analysis revealed CYP4L57 was predominantly expressed in the head, CYP9A114 in the hindgut, fat body, and Malpighian tubules, and CYP9A203 in the midgut, ovary, and hindgut. Molecular docking demonstrated strong binding interactions between these P450 genes and the insecticides. RNA interference-mediated silencing of CYP4L57, CYP9A114, and CYP9A203 significantly increased mortality rates by 12.42 % to 68.89 % upon exposure to the insecticides, abamectin, imidacloprid, and L-cyhalothrin. These findings suggest that cytochrome P450 genes contribute to insecticide tolerance in G. molesta and CYP4L57, CYP9A114, and CYP9A203 play key roles in this process.
Collapse
Affiliation(s)
- Hui Han
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ming-Gao Li
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kai-Yang Xing
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qi Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jun Hu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhi-Guo Zhao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qin Yu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | - Rui-Yan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China.
| | - Ling-Ling Gao
- CSIRO Agriculture & Food, Private Bag 5, Wembley, Perth, WA 6913, Australia.
| | - Yan-Qiong Guo
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
4
|
Li T, Yuan L, Jiang D, Yan S. HcCYP6AE178 plays a crucial role in facilitating Hyphantria cunea's adaptation to a diverse range of host plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106194. [PMID: 39672613 DOI: 10.1016/j.pestbp.2024.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 12/15/2024]
Abstract
Strong multi-host adaptability significantly contributes to the rapid dissemination of Hyphantria cunea. The present study explores the involvement of cytochrome P450 monooxygenase (P450) in the multi-host adaptation of H. cunea and aims to develop RNA pesticides targeting essential P450 genes to disrupt this adaptability. The results showed that inhibiting P450 activity notably reduced larval weight and food-intake across seven plants groups. The P450 gene HcCYP6AE178 was highly upregulated in H. cunea larvae from medium- and low-preference host plant groups. Silencing HcCYP6AE178 significantly decreased H. cunea larval body weight, increased larval mortality, inhibited energy metabolism genes expression and interfered with growth regulatory genes expression. Overexpression of HcCYP6AE178 enhanced the tolerance of Drosophila and Sf9 cells to the plant defensive substances cytisine and coumarin. The RNA pesticide CS-dsHcCYP6AE178 constructed using chitosan (CS) exhibited remarkable stability. Treatment with CS-dsHcCYP6AE178 effectively reduced H. cunea larval body weight, heightened larval mortality, and disrupted growth regulatory genes expression in low-preference host plant groups. Combined treatment of CS-dsHcCYP6AE178 and coumarin significantly elevated H. cunea larval mortality compared to coumarin alone, accompanied by the inhibition of growth regulatory genes expression and an abnormal increase in energy metabolism genes expression. Taken together, HcCYP6AE178 is essential for the adaptation of H. cunea to multiple host plants, and RNA pesticides targeting HcCYP6AE178 can effectively impair the performance of H. cunea in different host plants.
Collapse
Affiliation(s)
- Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
5
|
Li J, Jin L, Yan K, Xu P, Pan Y, Shang Q. STAT5B, Akt and p38 Signaling Activate FTZ-F1 to Regulate the Xenobiotic Tolerance-Related Gene SlCyp9a75b in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20331-20342. [PMID: 39253853 DOI: 10.1021/acs.jafc.4c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cytochrome P450 monooxygenases in insects have been verified to implicated in insecticide and phytochemical detoxification metabolism. However, the regulation of P450s, which are modulated by signal-regulated transcription factors (TFs), is less well studied in insects. Here, we found that the Malpighian tubule specific P450 gene SlCYP9A75b in Spodoptera litura is induced by xenobiotics. The transgenic Drosophila bioassay and RNAi results indicated that this P450 gene contributes to α-cypermethrin, cyantraniliprole, and nicotine tolerance. In addition, functional analysis revealed that the MAPKs p38, PI3K/Akt, and JAK-STAT activate the transcription factor fushi tarazu factor 1 (FTZ-F1) to regulate CYP9A75b expression. These findings provide mechanistic insights into the contributions of CYP9A genes to xenobiotic detoxification and support the possible involvement of different signaling pathways and TFs in tolerance to xenobiotics in insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
6
|
Jin L, Yan K, Kong H, Li J, Fan C, Pan Y, Shang Q. The Fat Body-Specific GST Gene SlGSTe11 Enhances the Tolerance of Spodoptera litura to Cyantraniliprole and Nicotine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19680-19688. [PMID: 39225316 DOI: 10.1021/acs.jafc.4c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Spodoptera litura is a significant agricultural pest, and its glutathione S-transferase (GST) plays a crucial role in insecticide resistance. This study aimed to investigate the relationship between the SlGSTe11 gene of S. litura and resistance to cyantraniliprole and nicotine. Transcriptome analysis revealed that SlGSTe11 is highly expressed mainly in fat bodies, with a significant increase in SlGSTe11 gene expression under induction by cyantraniliprole and nicotine. The ectopic expression of the SlGSTe11 gene in transgenic fruit flies resulted in a 5.22-fold increase in the tolerance to cyantraniliprole. Moreover, compared to the UAS-SlGSTe11 line, the Act5C-UAS>SlGSTe11 line laid more eggs and had a lower mortality after nicotine exposure. RNAi-mediated inhibition of SlGSTe11 gene expression led to a significant increase in the mortality of S. litura under cyantraniliprole exposure. In vitro metabolism experiments demonstrated that the recombinant SlGSTe11 protein efficiently metabolizes cyantraniliprole. Molecular docking results indicated that SlGSTe11 has a strong affinity for both cyantraniliprole and nicotine. These findings suggest that SlGSTe11 is involved in the development of resistance to cyantraniliprole and nicotine in S. litura.
Collapse
Affiliation(s)
- Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
7
|
Li J, Yan K, Jin L, Xu P, Pan Y, Shang Q. A Malpighian Tubule-Specific P450 Gene SlCYP9A75a Contributes to Xenobiotic Tolerance in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15624-15632. [PMID: 38952111 DOI: 10.1021/acs.jafc.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, P. R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
8
|
Li J, Yan K, Kong H, Jin L, Lv Y, Ding Y, Fan C, Pan Y, Shang Q. UDP-Glycosyltransferases UGT350C3 and UGT344L7 Confer Tolerance to Neonicotinoids in Field Populations of Aphis gossypii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14141-14151. [PMID: 38864686 DOI: 10.1021/acs.jafc.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The cotton aphid, Aphis gossypii, is a polyphagous pest that stunts host plant growth via direct feeding or transmitting plant virus. Due to the long-term application of insecticides, A. gossypii has developed different levels of resistance to numerous insecticides. We found that five field populations had evolved multiple resistances to neonicotinoids. To explore the resistance mechanism mediated by uridine diphosphate glycosyltransferases (UGTs), two upregulated UGT genes in these five strains, UGT350C3 and UGT344L7, were selected for functional analysis of their roles in neonicotinoid detoxification. Transgenic Drosophila bioassay results indicated that compared with the control lines, the UGT350C3 and UGT344L7 overexpression lines were more tolerant to thiamethoxam, imidacloprid, and dinotefuran. Knockdown of UGT350C3 and UGT344L7 significantly increased A. gossypii sensitivity to thiamethoxam, imidacloprid, and dinotefuran. Molecular docking analysis demonstrated that these neonicotinoids could bind to the active pockets of UGT350C3 and UGT344L7. This study provides functional evidence of neonicotinoid detoxification mediated by UGTs and will facilitate further work to identify strategies for preventing the development of neonicotinoid resistance in insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, No.5333 Xi'an Road, Changchun 130062, PR China
| |
Collapse
|
9
|
Duan ZK, Wang X, Lian MY, Guo SS, Gao ZH, Bai M, Huang XX, Song SJ. Bioassay-Guided and DeepSAT-Driven Precise Mining of Monoterpenoid Coumarin Derivatives with Antifeedant Effects from the Leaves of Ailanthus altissima. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10958-10969. [PMID: 38703118 DOI: 10.1021/acs.jafc.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Demand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of Ailanthus altissima (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives. The structure and configurations of these compounds were established and validated via extensive spectroscopic analysis, acetonide analysis, and quantum chemical calculations. Biologically, 5 exhibited significant antifeedant activity toward the Plutella xylostella. Moreover, tyrosinase being closely related to the growth and development of larva, the inhibitory potentials of 5 against tyrosinase was evaluated in vitro and in silico. The bioactivity evaluation results highlight the prospect of 5 as a novel category of botanical insecticide.
Collapse
Affiliation(s)
- Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Mei-Ya Lian
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shan-Shan Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhi-Heng Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- Basic Science Research Center Base (Pharmaceutical Science), Shandong province, Yantai University, Yantai 264005, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
10
|
Ding Y, Li J, Yan K, Jin L, Fan C, Bi R, Kong H, Pan Y, Shang Q. CF2-II Alternative Splicing Isoform Regulates the Expression of Xenobiotic Tolerance-Related Cytochrome P450 CYP6CY22 in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3406-3414. [PMID: 38329423 DOI: 10.1021/acs.jafc.3c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
11
|
Liang L, Li J, Jin L, Yan K, Pan Y, Shang Q. Identification of inducible CYP3 and CYP4 genes associated with abamectin tolerance in the fat body and Malpighian tubules of Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105751. [PMID: 38225094 DOI: 10.1016/j.pestbp.2023.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Abamectin, as a broad-spectrum bioinsecticide, has been widely used for the control of Lepidoptera insects, resulting in different levels of resistance to abamectin in Spodoptera litura. Cytochrome P450 monooxygenases (P450s) are known for their important roles in insecticide detoxification. In this study, the expression of SlCYP6B40, SlCYP4L12 and SlCYP9A32 in the fat body, and SlCYP4S9, SlCYP6AB12, SlCYP6AB58, SlCYP9A75a and SlCYP9A75b in Malpighian tubules was found to be significantly upregulated after abamectin exposure. SlCYP6AE44 and SlCYP6AN4 were simultaneously upregulated in these two tissues after abamectin exposure. Ectopically overexpressed SlCYP6AE44, SlCYP9A32 and SlCYP4S9 in transgenic Drosophila conferred tolerance to abamectin. In addition, homology modeling and molecular docking results suggested that SlCYP6AE44, SlCYP9A32 and SlCYP4S9 may be capable of binding with abamectin. These results demonstrate that upregulation of CYP3 and CYP4 genes may contribute to abamectin detoxification in S. litura and provide information for evidence-based insecticide resistance management strategies.
Collapse
Affiliation(s)
- Lin Liang
- International Affairs Office, Changchun University, Changchun 130021, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|