1
|
Yu J, Li L, Kraithong S, Zou L, Zhang X, Huang R. Comprehensive review on human Milk oligosaccharides: Biosynthesis, structure, intestinal health benefits, immune regulation, neuromodulation mechanisms, and applications. Food Res Int 2025; 209:116328. [PMID: 40253162 DOI: 10.1016/j.foodres.2025.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
This review provides a comprehensive analysis of the biosynthetic pathways of various oligosaccharides in Escherichia coli, structural characteristics, and bioactive mechanisms of human milk oligosaccharides (HMOs), with a particular emphasis on their roles in gut health, immune modulation, and neurodevelopment. HMOs primarily function as prebiotics, facilitating the growth of beneficial bacteria such as Bifidobacterium to maintain microbial homeostasis, with a discussion on the synergistic role of carbohydrate-binding modules (CBMs). In immune modulation, HMOs interact with lectins on immune and epithelial cells, influencing immune responses via pathways such as Toll-like receptors (TLRs). Additionally, HMOs have been linked to enhanced cognitive, motor, and language development in infants, influencing genes such as GABRB2, SLC1A7, GLRA4, and CHRM3. The review also examines commercially available HMO-containing products and highlights future research directions and potential applications in nutrition and healthcare.
Collapse
Affiliation(s)
- Jieting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lingshan Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Lei Z, Wu J, Lao C, Wang J, Xu Y, Li H, Yuan L, Chen X, Yao J. Multistep Metabolic Engineering of Escherichia coli for High-Level Ectoine Production. ACS Synth Biol 2025; 14:1230-1239. [PMID: 40131136 DOI: 10.1021/acssynbio.4c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ectoine is an important natural macromolecule protector that helps extremophiles maintain cellular stability and function under high-salinity conditions. Recently, the development of microbial strains for high-level ectoine production has become an attractive research direction. In this study, we constructed an efficient plasmid-free ectoine-producing strain. We modified the 5'-untranslated region of the ectABC gene cluster from Halomonas elongate to fine-tune the expression of genes ectA, ectB, and ectC. Furthermore, we optimized the carbon flow across the MEP pathway, the TCA cycle, and the aspartic acid metabolic pathway. Subsequently, we blocked the production of byproducts from the aspartic acid metabolic pathway and dynamically regulated the TCA cycle to coordinate the balance between strain growth and production. The final strain was tested in a 5-L fermenter, which reached 118.5 g/L at 114 h of fermentation. The metabolic engineering strategies employed in this study can be used for the biosynthesis of other aspartate derivatives.
Collapse
Affiliation(s)
- Zheng Lei
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Caiwen Lao
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Jin Wang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yanyi Xu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - He Li
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Sheng M, Liu Y, Zhu Y, Wang R, Zhang W, Mu W. Efficient Biosynthesis of Sialyllacto- N-tetraose a by a Metabolically Engineered Escherichia coli BL21(DE3) Strain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6820-6827. [PMID: 40036487 DOI: 10.1021/acs.jafc.4c12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Recently, the construction of metabolically engineered strains for the microbial synthesis of human milk oligosaccharides (HMOs) has attracted increasing attention. However, fewer efforts were made in the in vivo biosynthesis of complex HMOs, especially sialylated complex HMOs. In this study, we engineered Escherichia coli BL21(DE3) to efficiently produce sialyllacto-N-tetraose a (LST-a) efficiently. Three sequential glycosylation steps were introduced to construct the LST-a pathway, catalyzed by β1,3-N-acetylglucosaminylation, β1,3-galactosylation, and α2,3-sialylation. Pathway genes for cytidine 5'-monophospho (CMP)-N-acetylneuraminic acid (Neu5Ac) were introduced to support the sialylation donor supply. Production of LST-a was improved by deleting competitive genes of CMP-Neu5Ac synthesis, screening a more efficient α2,3-sialyltransferase, and combinatorial optimization of pathway gene expression. LST-a was finally produced with the titer of 1.235 and 4.85 g/L by shake-flask and fed-batch cultivation, respectively, demonstrating the feasibility of efficient microbial production of complex sialylated HMOs.
Collapse
Affiliation(s)
- Mian Sheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruiyan Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Xia Z, Lao C, Wu J, Jin Y, Chen X, Li H, Fan X, Yuan L, Sun L. Optimization of l-Fucose Biosynthesis in Escherichia coli through Pathway Engineering and Mixed Carbon Source Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6102-6112. [PMID: 40029204 DOI: 10.1021/acs.jafc.4c12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This study presents an engineered strain of Escherichia coli specifically designed to enhance the production of l-fucose while minimizing residues of 2'-fucosyllactose. The optimization strategies employed include the selection of key enzymes, optimization of gene copy numbers, and fermentation using mixed carbon sources. The metabolic flux was directed toward l-fucose synthesis by integrating preferred 1,2-fucosyltransferase and α-l-fucosidase into the genome. Furthermore, the gene copy numbers were optimized to enhance enzyme expression, thereby increasing l-fucose production. Additionally, the supply of guanosine 5'-triphosphate was improved, and cofactors were regenerated to better regulate metabolism. Modifications to transporter proteins effectively reduced the accumulation of 2'-fucosyllactose. The implementation of a glucose/glycerol co-fermentation strategy enhanced carbon flux distribution and strain efficiency. The optimized strain achieved a yield of 91.90 g/L of l-fucose in a 5 L bioreactor, representing an 80.01% increase over previous yields, with a productivity of 1.18 g L-1 h-1. This yield is the highest reported for l-fucose, demonstrating its potential for industrial production.
Collapse
Affiliation(s)
- Zihan Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Caiwen Lao
- Hefei CAS Health Bio-Industrial Technology Institute Company, Limited, Hefei, Anhui 230031, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yiwen Jin
- Hefei CAS Health Bio-Industrial Technology Institute Company, Limited, Hefei, Anhui 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - He Li
- Hefei CAS Health Bio-Industrial Technology Institute Company, Limited, Hefei, Anhui 230031, China
| | - Xijie Fan
- Hefei CAS Health Bio-Industrial Technology Institute Company, Limited, Hefei, Anhui 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Lijie Sun
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
5
|
Liu Y, Lin Q, Sheng M, Zhu Y, Wang R, Zhang W, Mu W. Highly Efficient In Vivo Production of Sialyllacto- N-tetraose C via Screening of Beneficial β1,4-galactosyltransferase and α2,6-sialyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5376-5384. [PMID: 39965110 DOI: 10.1021/acs.jafc.4c11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Biological production of human milk oligosaccharides (HMOs) using metabolically engineered strains is a research hotspot in food biotechnology, but less effort has been made on the biological production of sialylated complex HMOs. Sialyllacto-N-tetraose c is the only monosialylated complex HMO in the top 15 HMOs. In this study, the metabolic pathway of LST c was constructed in Escherichia coli BL21(DE3) by introducing three sequential glycosyltransferases: β1,3-N-acetylglucosaminyltransferase, β1,4-galactosyltransferase, and α2,6-sialyltransferase. The cytidine 5'-monophospho (CMP)-N-acetylneuraminic acid (Neu5Ac) pathway was enhanced to improve LST c production. The β1,4-galactosyltransferase from Helicobacter pylori J99 (HpGalT) and α2,6-sialyltransferase from Vespertiliibacter pulmonis (ED6ST) were screened as a pair of key glycosyltransferases for enhancing LST c production. The final engineered strain could produce 1.718 and 9.745 g/L LST c by shake-flask and fed-batch cultivation, respectively, indicating the feasibility of efficient biosynthesis of complex sialylated HMOs.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qian Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mian Sheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ruiyan Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
6
|
Lu S, Lao C, Wang J, Yuan L, Yao J, Li H, Fan X, Zhang Q, Wu J, Chen X. Multistrategy Optimization for High-Yield 3-Fucosyllactose Production in Escherichia coli BL21 Star (DE3). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5385-5394. [PMID: 39967241 DOI: 10.1021/acs.jafc.4c11761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
3-Fucosyllactose (3-FL), an essential component of human milk oligosaccharides, is crucial for infant health. However, the extraction of 3-FL from milk presents a significant challenge. In this study, E. coli BL21 Star (DE3) was engineered for 3-FL biosynthesis, and the gene combinations and metabolic pathways were optimized to obtain a high-yield 3-FL production strain. First, the 3-FL production module was integrated into E. coli. Second, an efficient alpha-1,3-fucosyltransferase was screened. Then, different integration sites were used to optimize the precursor synthesis gene cluster and the transferase genes and to screen for transporter proteins and glycerol utilization genes that could enhance 3-FL production. The 3FL05-1 strain yielded a 3-FL titer of 11.26 g/L in shake flasks. Further amplification in a 5 L bioreactor resulted in a 3-FL titer of 60.24 g/L, which represents the highest reported titer to date.
Collapse
Affiliation(s)
- Shujie Lu
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Caiwen Lao
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Jin Wang
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lixia Yuan
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - He Li
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Xijie Fan
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Qihong Zhang
- Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangsong Chen
- University of Science and Technology of China, Hefei 230026, China
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
7
|
Yang J, Mund NK, Yang L, Fang H. Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris. Enzyme Microb Technol 2025; 184:110576. [PMID: 39742835 DOI: 10.1016/j.enzmictec.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production. Here, we have reported the first-ever synthesis of LNnT employing P. pastoris as the host. Initially, LNnT biosynthetic pathway genes β-1,3-N-acetylglucosaminyltransferase (lgtA) and β-1,4-galactostltransferase (lgtB) along with lactose permease (lac12) and galactose epimerase (gal10) were integrated into the genome of P. pastoris, but only 0.139 g/L LNnT was obtained. Second, the titer of LNnT was improved to 0.162 g/L via up-regulating genes to strengthen the supply of precursors, UDP-GlcNAc (Uridine diphosphate N-acetylglucosamine) and UDP-Gal (Uridine diphosphate galactose), for LNnT biosynthesis. Third, by knocking out critical mediator pfk (6-phosphofructokinase) genes in glycolysis, the major glucose metabolic flux was rewired to the LNnT biosynthesis pathway. As a result, the strain accumulated 0.867 g/L LNnT in YPG medium supplemented with glucose and lactose. Finally, LNnT production was increased to 1.24 g/L in a 3 L bioreactor. The work aimed to explore the potential of P. pastoris as a for LNnT production.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Nitesh Kumar Mund
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Qian Q, Yang L, Zhao C, Tao M, Zhang W, Zhu Y, Mu W. Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes. Int J Biol Macromol 2025; 284:137987. [PMID: 39581422 DOI: 10.1016/j.ijbiomac.2024.137987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Lacto-N-tetraose (LNT) is a functional human milk oligosaccharide (HMO) commercially added to infant formula. Metabolically engineered strains for efficient production of LNT have been widely constructed. However, most of them rely on the use of plasmids, which might bring metabolic burden and the antibiotic issue. In this study, we attempted to construct a plasmid-free Escherichia coli MG1655 for LNT biosynthesis. Firstly, lacZ gene was disrupted and lacY expression was enhanced to improve the bioavailability of lactose as the initial substrate. Three copies of lgtA (encoding for β1,3-N-acetylglucosaminyltransferase) were integrated into the chromosome, enabling the highly efficient production of lacto-N-triose II (LNTri II) as the direct precursor of LNT. Efficient production of LNT was then optimized by multicopy integration of wbgO (encoding for β1,3-galactosyltransferase), disruption of the competitive pathways, and strengthening of UDP-galactose supply and oligosaccharide efflux. The final titer reached 6.99 and 42.38 g/L in shake-flask and fed-batch cultivation, respectively.
Collapse
Affiliation(s)
- Qianyi Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Longhao Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chunhua Zhao
- Bloomature Biotechnology Corporation, Limited, Beijing 102629, People's Republic of China
| | - Mengting Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
9
|
Gan J, Chen X, He Y, Pan C, Zhang Y, Dong Z. High-Level Production of Nicotinamide Mononucleotide by Engineered Escherichia Coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28360-28368. [PMID: 39658968 DOI: 10.1021/acs.jafc.4c10205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Nicotinamide mononucleotide (NMN), a key precursor of NAD+, is a promising nutraceutical due to its excellent efficacy in alleviating aging and disease. The bioproduction of NMN faces challenges related to incomplete metabolic engineering and insufficient metabolic flux. Here, we constructed an NMN synthesis pathway in Escherichia coli BW25113 by deleting the competitive pathway genes and introducing three heterologous genes encoding the key enzymes nicotinamide phosphoribosyltransferase (NAMPT), phosphoribosyl pyrophosphate synthetase and an NMN transporter. Next, the identification of a highly active NAMPT and optimization of gene expression markedly increased the conversion of NAM to NMN, with a titer of 3503.85 mg/L in shake flasks. Furthermore, by facilitating the coutilization of glucose and xylose, more metabolic flux was diverted toward PRPP biosynthesis, resulting in an NMN titer of 15.66 g/L through whole-cell catalysis and 46.66 g/L in a 2-L bioreactor. This represents the highest NMN yield reported to date, exhibiting great potential for initiating sustainable industrial production of NMN.
Collapse
Affiliation(s)
- Jiajia Gan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongzhi He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaozhi Pan
- ShenZhen Siyomicro Bio-Tech Co., Ltd, Shenzhen 518100, China
| | - Yanfeng Zhang
- ShenZhen Siyomicro Bio-Tech Co., Ltd, Shenzhen 518100, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Lv X, Chen X, Liu Y, Yuan L, Wu J, Yao J. Efficient Production of 3'-Sialyllactose Using Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27314-27325. [PMID: 39582160 PMCID: PMC11638949 DOI: 10.1021/acs.jafc.4c08703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
3'-Sialyllactose (3'-SL), a key component of human milk oligosaccharides, provides significant health benefits and immune modulation, and is increasingly used in infant formula and dietary supplements. This study presents a novel approach for the efficient biosynthesis of 3'-SL using Escherichia coli BL21star(DE3)ΔlacZ through genomic integration. We first addressed the issue of metabolic competition by deleting crucial genes, nanA, nanK, nanE, and nanT, that are involved in the degradation of N-acetylneuraminic acid. This strategic gene knockout minimized the flux through competing pathways. The engineered Escherichia coli strain was subsequently transformed with the exogenous genes neuBCA and nST, enabling the de novo synthesis of 3'-SL. A modular metabolic engineering strategy was utilized to optimize the expression of key enzymes within the MSU module, enhancing and balancing the carbon flux distribution. Additionally, a cofactor regeneration strategy was implemented to increase CTP availability, which improved cofactor recycling and fine-tuned the metabolic pathway for maximal 3'-SL production. Transport protein screening was incorporated to further increase the extracellular concentration of 3'-SL, resulting in an unprecedented yield of 56.8 g/L in a 5L bioreactor fermentation, setting a new benchmark in the field.
Collapse
Affiliation(s)
- Xinyang Lv
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
- University
of Science & Technology of China, Hefei 230026, China
| | - Xiangsong Chen
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yifan Liu
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
- University
of Science & Technology of China, Hefei 230026, China
| | - Lixia Yuan
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinyong Wu
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
- University
of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Tao M, Yang L, Zhao C, Huang Z, Zhao M, Zhang W, Zhu Y, Mu W. Rational modification of Neisseria meningitidis β1,3-N-acetylglucosaminyltransferase for lacto-N-neotetraose synthesis with reduced long-chain derivatives. Carbohydr Polym 2024; 345:122543. [PMID: 39227090 DOI: 10.1016/j.carbpol.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
Lacto-N-neotetraose (LNnT), as a neutral core structure within human milk oligosaccharides (HMOs), has garnered widespread attention due to its exceptional physiological functions. In the process of LNnT synthesis using cellular factory approaches, substrate promiscuity of glycosyltransferases leads to the production of longer oligosaccharide derivatives. Here, rational modification of β1,3-N-acetylglucosaminyltransferase from Neisseria meningitidis (LgtA) effectively decreased the concentration of long-chain LNnT derivatives. Specifically, the optimal β1,4-galactosyltransferase (β1,4-GalT) was selected from seven known candidates, enabling the efficient synthesis of LNnT in Escherichia coli BL21(DE3). Furthermore, the influence of lactose concentration on the distribution patterns of LNnT and its longer derivatives was investigated. The modification of LgtA was conducted with computational assistance, involving alanine scanning based on molecular docking to identify the substrate binding pocket and implementing large steric hindrance on crucial amino acids to obstruct LNnT entry. The implementation of saturation mutagenesis at positions 223 and 228 of LgtA yielded advantageous mutant variants that did not affect LNnT synthesis while significantly reducing the production of longer oligosaccharide derivatives. The most effective mutant, N223I, reduced the molar ratio of long derivatives by nearly 70 %, showcasing promising prospects for LNnT production with diminished byproducts.
Collapse
Affiliation(s)
- Mengting Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Longhao Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chunhua Zhao
- Bloomature Biotechnology Corporation, Limited, Beijing 102629, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China..
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
12
|
Du Z, Zhu Y, Lu Z, Chen R, Huang Z, Chen Y, Guang C, Mu W. Combinatorial Optimization Strategies for 3-Fucosyllactose Hyperproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14191-14198. [PMID: 38878091 DOI: 10.1021/acs.jafc.4c02950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
3-Fucosyllactose (3-FL), an important fucosylated human milk oligosaccharide in breast milk, offers numerous health benefits to infants. Previously, we metabolically engineered Escherichia coli BL21(DE3) for the in vivo biosynthesis of 3-FL. In this study, we initially optimized culture conditions to double 3-FL production. Competing pathway genes involved in in vivo guanosine 5'-diphosphate-fucose biosynthesis were subsequently inactivated to redirect fluxes toward 3-FL biosynthesis. Next, three promising transporters were evaluated using plasmid-based or chromosomally integrated expression to maximize extracellular 3-FL production. Additionally, through analysis of α1,3-fucosyltransferase (FutM2) structure, we identified Q126 residues as a highly mutable residue in the active site. After site-saturation mutation, the best-performing mutant, FutM2-Q126A, was obtained. Structural analysis and molecular dynamics simulations revealed that small residue replacement positively influenced helical structure generation. Finally, the best strain BD3-A produced 6.91 and 52.1 g/L of 3-FL in a shake-flask and fed-batch cultivations, respectively, highlighting its potential for large-scale industrial applications.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhen Lu
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
13
|
Yang Y, Thorhallsson AT, Rovira C, Holck J, Meyer AS, Yang H, Zeuner B. Improved Enzymatic Production of the Fucosylated Human Milk Oligosaccharide LNFP II with GH29B α-1,3/4-l-Fucosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11013-11028. [PMID: 38691641 PMCID: PMC11100010 DOI: 10.1021/acs.jafc.4c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Five GH29B α-1,3/4-l-fucosidases (EC 3.2.1.111) were investigated for their ability to catalyze the formation of the human milk oligosaccharide lacto-N-fucopentaose II (LNFP II) from lacto-N-tetraose (LNT) and 3-fucosyllactose (3FL) via transglycosylation. We studied the effect of pH on transfucosylation and hydrolysis and explored the impact of specific mutations using molecular dynamics simulations. LNFP II yields of 91 and 65% were obtained for the wild-type SpGH29C and CpAfc2 enzymes, respectively, being the highest LNFP II transglycosylation yields reported to date. BbAfcB and BiAfcB are highly hydrolytic enzymes. The results indicate that the effects of pH and buffer systems are enzyme-dependent yet relevant to consider when designing transglycosylation reactions. Replacing Thr284 in BiAfcB with Val resulted in increased transglycosylation yields, while the opposite replacement of Val258 in SpGH29C and Val289 CpAfc2 with Thr decreased the transfucosylation, confirming a role of Thr and Val in controlling the flexibility of the acid/base loop in the enzymes, which in turn affects transglycosylation. The substitution of an Ala residue with His almost abolished secondary hydrolysis in CpAfc2 and BbAfcB. The results are directly applicable in the enhancement of transglycosylation and may have significant implications for manufacturing of LNFP II as a new infant formula ingredient.
Collapse
Affiliation(s)
- Yaya Yang
- Section
for Protein Chemistry and Enzyme Technology, Department of Biotechnology
and Biomedicine, DTU Bioengineering, Technical
University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark
- School
of Food and Biological Engineering, Jiangsu
University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Albert Thor Thorhallsson
- Section
for Protein Chemistry and Enzyme Technology, Department of Biotechnology
and Biomedicine, DTU Bioengineering, Technical
University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica &
IQTCUB, Universitat de Barcelona, Barcelona 08028, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08020, Spain
| | - Jesper Holck
- Section
for Protein Chemistry and Enzyme Technology, Department of Biotechnology
and Biomedicine, DTU Bioengineering, Technical
University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark
| | - Anne S. Meyer
- Section
for Protein Chemistry and Enzyme Technology, Department of Biotechnology
and Biomedicine, DTU Bioengineering, Technical
University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark
| | - Huan Yang
- School
of Food and Biological Engineering, Jiangsu
University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Birgitte Zeuner
- Section
for Protein Chemistry and Enzyme Technology, Department of Biotechnology
and Biomedicine, DTU Bioengineering, Technical
University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
14
|
Wang L, Zhu Y, Zhao C, Zhao M, Li Z, Xu W, Mu W. Engineering Escherichia coli for Highly Efficient Biosynthesis of Lacto- N-difucohexaose II through De Novo GDP-l-fucose Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10469-10476. [PMID: 38659344 DOI: 10.1021/acs.jafc.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Lacto-N-difucohexaose II (LNDFH II) is a typical fucosylated human milk oligosaccharide and can be enzymatically produced from lacto-N-tetraose (LNT) by a specific α1,3/4-fucosyltransferase from Helicobacter pylori DMS 6709, referred to as FucT14. Previously, we constructed an engineered Escherichia coli BL21(DE3) with a single plasmid for highly efficient biosynthesis of LNT. In this study, two additional plasmids harboring the de novo GDP-L-fucose pathway module and FucT14, respectively, were further introduced to construct the strain for successful biosynthesis of LNDFH II. FucT14 was actively expressed, and the engineered strain produced LNDFH II as the major product, lacto-N-fucopentaose (LNFP) V as the minor product, and a trace amount of LNFP II and 3-fucosyllactose as very minor products. Additional expression of the α1,3-fucosyltransferase FutM1 from a Bacteroidaceae bacterium from the gut metagenome could obviously enhance the LNDFH II biosynthesis. After optimization of induction conditions, the maximum titer reached 3.011 g/L by shake-flask cultivation. During the fed-batch cultivation, LNDFH II was highly efficiently produced with the highest titer of 18.062 g/L and the productivity yield of 0.301 g/L·h.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chunhua Zhao
- Bloomature Biotechnology Corporation, Limited, Beijing 102629, People's Republic of China
| | - Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
15
|
Zhu Y, Chen R, Wang H, Chen Y, Huang Z, Du Z, Meng J, Zhou J, Mu W. De Novo Biosynthesis of Difucosyllactose by Artificial Pathway Construction and α1,3/4-Fucosyltransferase Rational Design in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598361 DOI: 10.1021/acs.jafc.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Difucosyllactose (DFL) is a significant and plentiful oligosaccharide found in human breast milk. In this study, an artificial metabolic pathway of DFL was designed, focusing on the de novo biosynthesis of GDP-fucose from only glycerol. This was achieved by engineering Escherichia coli to endogenously overexpress genes manB, manC, gmd, and wcaG and heterologously overexpress a pair of fucosyltransferases to produce DFL from lactose. The introduction of α-1,2-fucosyltransferase from Helicobacter pylori (FucT2) along with α-1,3/4-fucosyltransferase (HP3/4FT) addressed rate-limiting challenges in enzymatic catalysis and allowed for highly efficient conversion of lactose into DFL. Based on these results, molecular modification of HP3/4FT was performed based on computer-assisted screening and structure-based rational design. The best-performing mutant, MH5, containing a combination of five mutated sites (F49K/Y131D/Y197N/E338D/R369A) of HP3/4FT was obtained. The best strain BLC09-58 harboring MH5 yielded 45.81 g/L of extracellular DFL in 5-L fed-batch cultures, which was the highest titer reported to date.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|