1
|
Kurpejović E, Sariyar Akbulut B, Avci FG. Tailoring Corynebacterium glutamicum for Sustainable Biomanufacturing: From Traditional to Cutting-Edge Technologies. Mol Biotechnol 2025:10.1007/s12033-025-01447-z. [PMID: 40493161 DOI: 10.1007/s12033-025-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 05/05/2025] [Indexed: 06/12/2025]
Abstract
As the workhorse of industrial amino acid production, Corynebacterium glutamicum is the focus of this review, which provides a comprehensive overview of available techniques employed to engineer strains with desired traits. The review highlights both traditional and cutting-edge approaches with a brief introduction to the bacterium's physiology, serving as a foundation for understanding its metabolic capabilities and potential applications. Genome modulation techniques by contrasting traditional methods with CRISPR-based approaches, as well as transcription modulation strategies that enhance gene expression and metabolic flux, and high-throughput techniques that streamline strain development processes are summarized. Furthermore, the roles of artificial intelligence and machine learning in genetic engineering are explored, emphasizing their growing impact on strain development.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
- Acies Bio d.o.o., Tehnološki Park 21, 1000, Ljubljana, Slovenia
| | - Berna Sariyar Akbulut
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Fatma Gizem Avci
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye.
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Gao S, Zeng W, Li D, Zhou J, Xu S. Efficient Biosynthesis of 8-Prenylkaempferol from Kaempferol by Using Flavonoid 8-Dimethylallyltransferase Derived from Epimedium koreanum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10449-10455. [PMID: 40244799 DOI: 10.1021/acs.jafc.5c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The genus Epimedium includes popular Chinese medicinal plants, and icariin and its precursor icaritin are the key bioactive components of Epimedium. Here, we identified flavonoid 8-dimethylallyltransferase (F8DT) in the authentic medicinal material of Epimedium koreanum, which is a key gene in the icariin biosynthesis pathway. This enzyme can catalyze the synthesis of 8-prenylkaempferol (8PK) from kaempferol. The catalytic ability of the rate-limiting enzyme EkF8DT was significantly improved by truncating its N-terminal intrinsically disordered regions (IDRs) and enhancing the flux of the mevalonate pathway. Icaritin was also successfully synthesized by introducing flavonoid 4'-O-methyltransferase into the Saccharomyces cerevisiae strain. Finally, the highest production of 8PK and icaritin (3.6 g/L and 172.0 mg/L, respectively) was obtained in the S. cerevisiae strain.
Collapse
Affiliation(s)
- Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Zheng Y, Mo Y, Yuan Y, Su T, Qi Q. A rapid and efficient strategy for combinatorial repression of multiple genes in Escherichia coli. Microb Cell Fact 2025; 24:74. [PMID: 40148961 PMCID: PMC11951683 DOI: 10.1186/s12934-025-02697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The regulation of multiple gene expression is pivotal for metabolic engineering. Although CRISPR interference (CRISPRi) has been extensively utilized for multi-gene regulation, the construction of numerous single-guide RNA (sgRNA) expression plasmids for combinatorial regulation remains a significant challenge. RESULTS In this study, we developed a combinatorial repression system for multiple genes by optimizing the expression of multi-sgRNA with various inducible promoters in Escherichia coli. We designed a modified Golden Gate Assembly method to rapidly construct the sgRNA expression plasmid p3gRNA-LTA. By optimizing both the promoter and the sgRNA handle sequence, we substantially mitigated undesired repression caused by the leaky expression of sgRNA. This method facilitates the rapid assessment of the effects of various inhibitory combinations on three genes by simply adding different inducers. Using the biosynthesis of N-acetylneuraminic acid (NeuAc) as an example, we found that the optimal combinatorial inhibition of the pta, ptsI, and pykA genes resulted in a 2.4-fold increase in NeuAc yield compared to the control. CONCLUSION We anticipate that our combinatorial repression system will greatly simplify the regulation of multiple genes and facilitate the fine-tuning of metabolic flow in the engineered strains.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yuxia Mo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
4
|
Li M, Chen Z, Huo YX. Application Evaluation and Performance-Directed Improvement of the Native and Engineered Biosensors. ACS Sens 2024; 9:5002-5024. [PMID: 39392681 DOI: 10.1021/acssensors.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transcription factor (TF)-based biosensors (TFBs) have received considerable attention in various fields due to their capability of converting biosignals, such as molecule concentrations, into analyzable signals, thereby bypassing the dependence on time-consuming and laborious detection techniques. Natural TFs are evolutionarily optimized to maintain microbial survival and metabolic balance rather than for laboratory scenarios. As a result, native TFBs often exhibit poor performance, such as low specificity, narrow dynamic range, and limited sensitivity, hindering their application in laboratory and industrial settings. This work analyzes four types of regulatory mechanisms underlying TFBs and outlines strategies for constructing efficient sensing systems. Recent advances in TFBs across various usage scenarios are reviewed with a particular focus on the challenges of commercialization. The systematic improvement of TFB performance by modifying the constituent elements is thoroughly discussed. Additionally, we propose future directions of TFBs for developing rapid-responsive biosensors and addressing the challenge of application isolation. Furthermore, we look to the potential of artificial intelligence (AI) technologies and various models for programming TFB genetic circuits. This review sheds light on technical suggestions and fundamental instructions for constructing and engineering TFBs to promote their broader applications in Industry 4.0, including smart biomanufacturing, environmental and food contaminants detection, and medical science.
Collapse
Affiliation(s)
- Min Li
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Zhenya Chen
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Yi-Xin Huo
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| |
Collapse
|
5
|
Enright AL, Heelan WJ, Ward RD, Peters JM. CRISPRi functional genomics in bacteria and its application to medical and industrial research. Microbiol Mol Biol Rev 2024; 88:e0017022. [PMID: 38809084 PMCID: PMC11332340 DOI: 10.1128/mmbr.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
SUMMARYFunctional genomics is the use of systematic gene perturbation approaches to determine the contributions of genes under conditions of interest. Although functional genomic strategies have been used in bacteria for decades, recent studies have taken advantage of CRISPR (clustered regularly interspaced short palindromic repeats) technologies, such as CRISPRi (CRISPR interference), that are capable of precisely modulating expression of all genes in the genome. Here, we discuss and review the use of CRISPRi and related technologies for bacterial functional genomics. We discuss the strengths and weaknesses of CRISPRi as well as design considerations for CRISPRi genetic screens. We also review examples of how CRISPRi screens have defined relevant genetic targets for medical and industrial applications. Finally, we outline a few of the many possible directions that could be pursued using CRISPR-based functional genomics in bacteria. Our view is that the most exciting screens and discoveries are yet to come.
Collapse
Affiliation(s)
- Amy L. Enright
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William J. Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Bales MK, Vergara MM, Eckert CA. Application of functional genomics for domestication of novel non-model microbes. J Ind Microbiol Biotechnol 2024; 51:kuae022. [PMID: 38925657 PMCID: PMC11247347 DOI: 10.1093/jimb/kuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
With the expansion of domesticated microbes producing biomaterials and chemicals to support a growing circular bioeconomy, the variety of waste and sustainable substrates that can support microbial growth and production will also continue to expand. The diversity of these microbes also requires a range of compatible genetic tools to engineer improved robustness and economic viability. As we still do not fully understand the function of many genes in even highly studied model microbes, engineering improved microbial performance requires introducing genome-scale genetic modifications followed by screening or selecting mutants that enhance growth under prohibitive conditions encountered during production. These approaches include adaptive laboratory evolution, random or directed mutagenesis, transposon-mediated gene disruption, or CRISPR interference (CRISPRi). Although any of these approaches may be applicable for identifying engineering targets, here we focus on using CRISPRi to reduce the time required to engineer more robust microbes for industrial applications. ONE-SENTENCE SUMMARY The development of genome scale CRISPR-based libraries in new microbes enables discovery of genetic factors linked to desired traits for engineering more robust microbial systems.
Collapse
Affiliation(s)
- Margaret K Bales
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael Melesse Vergara
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|