1
|
Lu SY, Zhou T, Shabbir I, Choi J, Kim YH, Park M, Aweya JJ, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides: Multifunctional bioactive ingredients for cosmetic formulations. Carbohydr Polym 2025; 353:123276. [PMID: 39914982 DOI: 10.1016/j.carbpol.2025.123276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 05/07/2025]
Abstract
Marine algal polysaccharides (MAP) are increasingly recognized as versatile bioactive ingredients in cosmetics due to their wide-ranging therapeutic benefits and eco-friendly sourcing. Sourced from red, brown, and green algae, these polysaccharides deliver numerous advantages for skin health, including antioxidant, anti-inflammatory, anti-aging, hydrating, and regenerative properties. As demand for natural and sustainable products grows, MAP offer a renewable and environmentally responsible alternative to synthetic chemicals. This review examines the chemical structures, extraction methods, biological activities, and cosmetic applications of key MAP, such as carrageenans, alginates, fucoidans, laminaran, ulvan, and sulfated rhamnan. It also discusses emerging research trends, innovative extraction techniques, and the formulation of multifunctional products that combine these polysaccharides with other bioactive compounds. As consumer preferences increasingly lean toward ethical and sustainable choices, MAP are well-positioned to contribute to the development of high-performance cosmetic products that meet both industry standards and consumer expectations.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; R & I Center, COSMAX China, 529 Xiaonan Road, Shanghai, China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Iqra Shabbir
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jaehwan Choi
- R & I Center, COSMAX China, 529 Xiaonan Road, Shanghai, China
| | - Young Heui Kim
- R & I Center, COSMAX China, 529 Xiaonan Road, Shanghai, China
| | - Myeongsam Park
- R & I Center, COSMAX China, 529 Xiaonan Road, Shanghai, China
| | - Jude Juventus Aweya
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
2
|
Zheng L, Shen J, Zhang Y, Chen F, Chen G, Mei X, Zhou J, Chang Y, Xue C. The discovery of a random endo-acting ι-carrageenase with bifunctional activities against ι-carrageenan and κ-carrageenan. Int J Biol Macromol 2025; 293:139068. [PMID: 39730058 DOI: 10.1016/j.ijbiomac.2024.139068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Carrageenans have attracted increasing research interests in recent decades for their various physicochemical and physiological properties. Random endo-acting carrageenases are promising tools for tailoring the molecular weight of carrageenan and preparing a series of carrageenan oligosaccharides. Although the processive ι-carrageenases in the GH82 family have been widely investigated, the random ι-carrageenase has not been reported. Herein, a novel GH82 family protein Cg82Mf, which was identified by AlphaFold2 as lacking a lid structure on the catalytic groove, was cloned and expressed in Escherichia coli. The analysis of hydrolysis pattern proved that Cg82Mf was the first random endo-acting enzyme against ι-carrageenan, and was capable of preparing the hydrolysis products with various degrees of polymerization. Cg82Mf exhibited higher substrate affinity among all characterized ι-carrageenases, reflected by its low Km value (0.18 μM). Remarkably, Cg82Mf could also hydrolyze κ-carrageenan, that is, the subsites of the enzyme could tolerate κ-carrageenan disaccharide units, which demonstrated a novel cleavage specificity. The novel hydrolysis pattern and cleavage specificity shed light on the presence of diversity within the GH82 family, and indicated that Cg82Mf could be facilitated as a potential biocatalyst for the molecule tailoring of carrageenans.
Collapse
Affiliation(s)
- Long Zheng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Fangyi Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jinhang Zhou
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
3
|
Jiang C, Wang W, Sun J, Hao J, Mao X. Simultaneous One-Step Preparation of β/κ-Carrapentaose and 3,6-Anhydro-D-galactose by Cascading κ-Carrageenase and an Exo-α-3,6-Anhydro-D-galactosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26274-26282. [PMID: 39541148 DOI: 10.1021/acs.jafc.4c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carrageenan oligosaccharides have shown promising bioavailability and possess a variety of physiological activities, making them highly suitable for use in the food, pharmaceutical, and agricultural industries. The preferred method for producing carrageenan oligosaccharides is using various carrageenolytic enzymes, as it offers mild reaction conditions, high efficiency, and product specificity. However, there is still a lack of specific applications for using these enzymes to prepare odd-numbered carrageenan-oligosaccharides (OCOSs). Our previous research identified a more convenient route for simultaneously preparing OCOSs and 3,6-anhydro-D-galactose (D-AHG) using only two types of carrageenolytic enzymes: κ-carrageenase and exo-α-3,6-anhydro-D-galactosidase (D-ADAGase). In this study, we utilized a CipA-based self-assembly system to cascade κ-carrageenase CaKC16A and D-ADAGase ZuGH129A for one-step preparation of β/κ-carrapentaose, G-(DA-G4S)2, and D-AHG from degrading β/κ-carrageenan. This self-assembled enzyme, namely CipA-CaKC16A-ZuGH129A, can be easily obtained through a simple centrifugation process. The final optimized enzymatic process produced 0.74 g/L G-(DA-G4S)2 and 0.13 g/L D-AHG. This cascade system of different types of carrageenolytic enzymes has the potential to achieve the preparation of various types of carrageenan oligosaccharides.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
- Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|