1
|
Wang Y, Huang R, Gao S, Yue M, Zhang X, Zeng W, Tang B, Zhou J, Huang D, Xu S. Identification of two new flavone 4'- O-methyltransferases and their application in de novo biosynthesis of ( 2S)-hesperetin in Yarrowia lipolytica. Synth Syst Biotechnol 2025; 10:728-736. [PMID: 40248485 PMCID: PMC12002713 DOI: 10.1016/j.synbio.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
Methyltransferases are pivotal enzymes in the biosynthesis of methylated flavonoids, including (2S)-hesperetin. However, existing flavonoid 4'-O-methyltransferase (F4'OMT) enzymes typically exhibit low substrate specificity and catalytic efficiency, which hinders microbial synthesis. To overcome this limitation, this study screened and identified two novel F4'OMTs, CrcOMT-2 and CgtOMT-3, from Chinese citrus varieties Citrus reticulata 'Chachiensis' (CZG) and Citrus grandis Tomentosa (HZY). These enzymes displayed high substrate specificity for (2S)-eriodictyol. A strain capable of de novo synthesis of (2S)-hesperetin was developed by integrating the novel F4'OMTs and other biosynthetic pathway genes at high copy numbers into Yarrowia lipolytica. The engineered strain achieved a remarkable production titre of (2S)-hesperetin (130.2 mg/L), surpassing the yields of previously reported F4'OMTs. Furthermore, availability of the cofactor S-adenosylmethionine (SAM) was optimised to enhance methyltransferase catalytic efficiency, enabling the engineered strain to produce 178.2 mg/L of (2S)-hesperetin during fed-batch fermentation with SAM supplementation, the highest yield reported to date. This study represents the first successful de novo biosynthesis of (2S)-hesperetin in Y. lipolytica, providing valuable insights into the synthesis of other O-methylated flavonoids.
Collapse
Affiliation(s)
- Yiyun Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ruiqiu Huang
- Shenzhen Tianjiao Medical Technology Co., Ltd, GuangDong, Shenzhen, 518029, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xuan Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Dongliang Huang
- Shenzhen Tianjiao Medical Technology Co., Ltd, GuangDong, Shenzhen, 518029, China
| | - Sha Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Xu J, Zhang LX, Yang XY, Fan BY, Ju D, Tang ZY, Lei J, Xu ZG, Chen ZZ. Site-Divergent C-H Bond Functionalization of Free Phenols Enables Hydroxyflavanones. J Org Chem 2025; 90:6378-6391. [PMID: 40327859 DOI: 10.1021/acs.joc.4c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
A solvent-controlled strategy to regulate the site-selectivity of free phenols and stereospecificity of 1,4-addition is presented, thereby divergently producing 4'-hydroxyflavanone and 2'-hydroxyflavanone via site-specific C-H bond functionalization. This protocol is applicable to a diverse range of free phenols. Furthermore, this strategy efficiently accesses natural product-like frameworks, including Eriodictyol, Narigenin, (+)-Anastatins A, (+)-Anastatins B, and (+)-Cycloaltilisin 7 with high selectivity. Late-stage modifications of pharmaceuticals, such as Ethinylestradiol, β-Estradiol, Ezetimibe, and Estrone, are certainly enabling. Importantly, the IC50 values of the newly synthesized compounds 4o and 5m were determined to be in the submicromolar range, indicating a notably potent inhibitory effect. This finding for the synthesis of hydroxyflavanones marks a significant stride in overcoming the extraction challenges of natural products.
Collapse
Affiliation(s)
- Jia Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Li-Xin Zhang
- College of Agricultural and Forestry Sciences, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Xiao-Yu Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bing-Ying Fan
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dong Ju
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zi-Yi Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Niu W, Zhang J, Qu L, Ji XJ, Wei Y. Advances in synthesizing plant-derived isoflavones and their precursors with multiple pharmacological activities using engineered yeasts. Microb Cell Fact 2025; 24:75. [PMID: 40155940 PMCID: PMC11954244 DOI: 10.1186/s12934-025-02692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Isoflavones such as daidzein and genistein are naturally occurring compounds found in plants such as legumes. They have diverse pharmacological activities, making them valuable in the food, pharmaceutical, and cosmetic industries. Currently, isoflavones are mainly obtained through the extraction of plant biomass. Chemical synthesis is challenging for most isoflavones due to the complexity of their structures. The limited supply of isoflavones cannot meet the market demands. Advances in synthetic biology have provided a sustainable and efficient solution for the production of isoflavones, with yeasts often serving as the microbial chassis for biosynthesis. This review summarizes the pharmacological properties of specific isoflavones, their biosynthetic pathways, and the technical strategies used in engineered yeasts for isoflavone production. In addition, the development of synthetic biology and state-of-the-art biotechnological strategies for the environmentally friendly production of bioactive isoflavones is discussed.
Collapse
Affiliation(s)
- Wenhui Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jingxian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Laboratory of Synthetic Biology, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
He W, Liu M, Yue M, Chen Q, Ye S, Zhou J, Zeng W, Xia Y. De Novo Biosynthesis of Chlorogenic Acid in Yarrowia lipolytica through Cis-Acting Element Optimization and NADPH Regeneration Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6081-6091. [PMID: 40025709 DOI: 10.1021/acs.jafc.4c12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chlorogenic acid (CGA) is a natural hydroxycinnamic acid ester with significant applications in food preservation and nutritional health. However, extraction of CGA from plants is challenging, resulting in low purity that fails to meet increasing market demands. Furthermore, the broad substrate specificity of hydroxycinnamoyl-CoA:quinic acid transferase catalysis generating a plethora of byproducts, lack of NADPH regeneration, and the presence of degrading proteins impede microbial synthesis of CGA. This study achieved de novo synthesis of CGA in Yarrowia lipolytica by introducing hydroxylation and condensation modules based on screening synthetic pathway genes and optimizing parallel promoters. Additionally, an NADPH regeneration system was incorporated to enhance the efficiency of hydroxylation, thereby increasing the titer of CGA to 333.16 mg/L. From transcriptome data, 528 significantly upregulated genes were identified, and deletion of YALI0_B21824g significantly slowed the rate of CGA degradation, which increased the titer of CGA to 351.33 mg/L in shake flasks. Applying fed-batch fermentation in a 5 L bioreactor further increased CGA production to 4837.32 mg/L (64 mg/g DCW). This study established de novo synthesis of CGA in Y. lipolytica, providing a foundation for microbial production of coumaric acid and its derivatives.
Collapse
Affiliation(s)
- Wenjing He
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qihang Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sen Ye
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Deng H, Li H, Li S, Zhou J. Engineering Saccharomyces cerevisiae for Efficient Liquiritigenin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4787-4796. [PMID: 39937996 DOI: 10.1021/acs.jafc.4c10455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Production of liquiritigenin, a plant-derived significant flavonoid traditionally extracted from licorice plants, is constrained by ecological and operational inefficiencies. Despite efforts to achieve heterologous reconstruction of liquiritigenin synthesis pathway in microorganisms, the liquiritigenin titers remain low and the process is still at the proof-of-concept stage, insufficient to replace plant extraction. Herein, to achieve the efficient production of liquiritigenin, the galactose induction system in Saccharomyces cerevisiae was reengineered for better decoupling of production and growth stages, making it more suitable for heterologous pathways, and then applied to a naringenin-producing strain and modified to redirect the pathway for liquiritigenin production. To improve liquiritigenin ratio, a dual NADPH supply system was developed to enhance production capabilities. Subsequently, the concept of using endogenous metabolites to regulate the simplification and optimization of heterologous natural product biosynthetic pathways was proposed, and a general metabolic strategy model for flavonoid compounds, the aromatic ester model, was introduced. The final engineered strain achieved 867.67 mg/L liquiritigenin in the 5 L fermenter. These results demonstrated the innovative use of genetic and metabolic modifications to overcome conventional extraction limitations, providing valuable insights for synthesizing flavonoids and other natural products.
Collapse
Affiliation(s)
- Hanning Deng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hongbiao Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shan Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Wang J, Ma W, Ma W, Yao Z, Jiang Y, Jiang W, Xin F, Zhang W, Jiang M. Microbial Astaxanthin Synthesis by Komagataella phaffii through Metabolic and Fermentation Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1952-1964. [PMID: 39788928 DOI: 10.1021/acs.jafc.4c10113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Astaxanthin is a kind of carotenoid with a strong antioxidant ability, which has shown broad applications in the areas of healthcare, medicine, cosmetics, food additives, and aquaculture. With the increasing demand for natural products, the microbial production of astaxanthin has become a new hot spot. In this study, the astaxanthin synthesis pathway was first metabolically constructed in Komagataella phaffii (K. phaffii)(Pichia pastoris). By exploring the combination of different promoters, astaxanthin producers were obtained. Then, the key enzymes in the astaxanthin synthesis pathway were explored, and different enzyme assembly strategies and an increase in NADPH supply were used to improve the astaxanthin production. Furthermore, fermentation parameters including temperature, the concentration of the carbon source, nitrogen sources, metal ions, BHT (2,6-di-tert-butyl-4-methylphenol), and Tween-80 were comprehensively investigated for the microbial growth and astaxanthin synthesis. Finally, the astaxanthin production reached 716.13 mg/L by fed-batch fermentation in a 5 L bioreactor, which was the highest production of astaxanthin synthesized by K. phaffii.
Collapse
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Weixu Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Wenqi Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Zhi Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| |
Collapse
|
7
|
Qian T, Wei W, Dong Y, Zhang P, Chen X, Chen P, Li M, Ye BC. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica for 2-phenylethanol overproduction. BIORESOURCE TECHNOLOGY 2024; 411:131354. [PMID: 39182792 DOI: 10.1016/j.biortech.2024.131354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
The rose fragrance molecule 2-phenylethanol (2-PE) has huge market demand in the cosmetics, food and pharmaceutical industries. However, current 2-PE synthesis methods do not meet the efficiency market requirement. In this study, CRISPR-Cas9-related metabolic engineering strategies were applied to Yarrowia lipolytica for the de novo biosynthesis of 2-PE. Initially, overexpressing exogenous feedback-resistant EcAROGfbr and EcPheAfbr increased 2-PE production to 276.3 mg/L. Subsequently, the ylARO10 and ylPAR4 from endogenous genes were enhanced with the multi-copies to increase the titer to 605 mg/L. Knockout of ylTYR1 and enhancement of shikimate pathway by removing the precursor metabolic bottleneck and overexpressing the genes ylTKT, ylARO1, and ylPHA2 resulted in a significant increase of the 2-PE titer to 2.4 g/L at 84 h, with the yield of 0.06 g/gglu, which is the highest yield for de novo synthesis in yeast. This study provides a valuable precedent for the efficient biosynthesis of shikimate pathway derivatives.
Collapse
Affiliation(s)
- Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuxing Dong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shang Hai 200237, China
| | - Xiaochuan Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Pinru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Mengfan Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shang Hai 200237, China.
| |
Collapse
|
8
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|