1
|
Csorba C, Rodić N, Antonielli L, Sessitsch A, Vlachou A, Ahmad M, Compant S, Puschenreiter M, Molin EM, Assimopoulou AN, Brader G. Soil pH, developmental stages and geographical origin differently influence the root metabolomic diversity and root-related microbial diversity of Echium vulgare from native habitats. FRONTIERS IN PLANT SCIENCE 2024; 15:1369754. [PMID: 38984162 PMCID: PMC11232435 DOI: 10.3389/fpls.2024.1369754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Improved understanding of the complex interaction between plant metabolism, environmental conditions and the plant-associated microbiome requires an interdisciplinary approach: Our hypothesis in our multiomics study posited that several environmental and biotic factors have modulating effects on the microbiome and metabolome of the roots of wild Echium vulgare plants. Furthermore, we postulated reciprocal interactions between the root metabolome and microbiome. We investigated the metabolic content, the genetic variability, and the prokaryotic microbiome in the root systems of wild E. vulgare plants at rosette and flowering stages across six distinct locations. We incorporated the assessment of soil microbiomes and the measurement of selected soil chemical composition factors. Two distinct genetic clusters were determined based on microsatellite analysis without a consistent alignment with the geographical proximity between the locations. The microbial diversity of both the roots of E. vulgare and the surrounding bulk soil exhibited significant divergence across locations, varying soil pH characteristics, and within the identified plant genetic clusters. Notably, acidophilic bacteria were characteristic inhabitants of both soil and roots under acidic soil conditions, emphasizing the close interconnectedness between these compartments. The metabolome of E. vulgare significantly differed between root samples from different developmental stages, geographical locations, and soil pH levels. The developmental stage was the dominant driver of metabolome changes, with significantly higher concentrations of sugars, pyrrolizidine alkaloids, and some of their precursors in rosette stage plant roots. Our study featured the complex dynamics between soil pH, plant development, geographical locations, plant genetics, plant metabolome and microbiome, shedding light on existing knowledge gaps.
Collapse
Affiliation(s)
- Cintia Csorba
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Nebojša Rodić
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Angeliki Vlachou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Muhammad Ahmad
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva M. Molin
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Andreana N. Assimopoulou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Günter Brader
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| |
Collapse
|
2
|
Hirasawa Y, Kase A, Okamoto A, Suzuki K, Hiroki M, Kaneda T, Uchiyama N, Morita H. Vincazalidine A, a unique bisindole alkaloid from Catharanthus roseus. J Nat Med 2024; 78:382-392. [PMID: 38347371 DOI: 10.1007/s11418-023-01775-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
A new dimeric indole alkaloid, vincazalidine A consisting of an aspidosperma type and a modified iboga type with 1-azatricyclo ring system consisting of one azepane and two piperidine rings coupled with an oxazolidine ring was isolated from Catharanthus roseus, and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Vincazalidine A induced G2 arrest and subsequent apoptosis in human lung carcinoma cell line, A549 cells.
Collapse
Affiliation(s)
- Yusuke Hirasawa
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan.
| | - Ayaka Kase
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Akie Okamoto
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Keigo Suzuki
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Mizuki Hiroki
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nahoko Uchiyama
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Hiroshi Morita
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-Ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
3
|
Hiroki M, Abulikemu A, Totsuka C, Hirasawa Y, Kaneda T, Morita H. Isovincathicine from Catharanthus roseus induces apoptosis in A549 cells. J Nat Med 2024; 78:216-225. [PMID: 37668823 DOI: 10.1007/s11418-023-01740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
A dimeric indole alkaloid, isovincathicine consisting of an aspidosperma type and modified iboga with C-7-C-20 connection type skeletons was first isolated from Catharanthus roseus, and the structure including stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Isovincathicine inhibited cell proliferation in A549 cells. We investigated the detailed mode of action of isovincathicine-induced inhibitory effects on cell proliferation in A549 cells. Flow cytometric analysis showed that isovincathicine-treated cells accumulated in the G2 phase after 24 h, and the percentage of cells showing cell death increased after 48 h. Western blotting also showed increased expression of BimEL, an apoptosis-related protein, and decreased expression of Mcl-1 and Bcl-xL. Isovincathicine was suggested to induce apoptosis in A549 cells by a mechanism is similar to that of vinblastine.
Collapse
Affiliation(s)
- Mizuki Hiroki
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Aishanjiang Abulikemu
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Chihiro Totsuka
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yusuke Hirasawa
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hiroshi Morita
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
4
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Costa FLP, de Albuquerque ACF, Fiorot RG, Lião LM, Martorano LH, Mota GVS, Valverde AL, Carneiro JWM, dos Santos Junior FM. Structural characterisation of natural products by means of quantum chemical calculations of NMR parameters: new insights. Org Chem Front 2021. [DOI: 10.1039/d1qo00034a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review, we focus in all aspects of NMR simulation of natural products, from the fundamentals to the new computational toolboxes available, combining advanced quantum chemical calculations with upstream data processing and machine learning.
Collapse
Affiliation(s)
| | - Ana C. F. de Albuquerque
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Rodolfo G. Fiorot
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Luciano M. Lião
- Instituto de Química
- Universidade Federal de Goiás
- 74690-900 Goiânia-GO
- Brazil
| | - Lucas H. Martorano
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Gunar V. S. Mota
- Faculdade de Ciências Naturais/Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém-PA
- Brazil
| | - Alessandra L. Valverde
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - José W. M. Carneiro
- Departamento de Química Inorgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | | |
Collapse
|
6
|
Hashmi MA, Farooq U, Bibi SS, Naz S, Xu H, Asghar BH, Mabkhot YN, Alsayari A, Muhsinah AB, Khan A. A profound density functional theory study to unravel the spectroscopic and molecular properties of two Flavanols differing in
α
‐pyrone ring position. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Muhammad Ali Hashmi
- Department of ChemistryUniversity of Education, Attock Campus Attock Pakistan
| | - Umar Farooq
- Department of ChemistryCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of ChemistryChinese Academy of Sciences Beijing China
| | - Syeda Sidra Bibi
- Department of ChemistryCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
| | - Sadia Naz
- Department of ChemistryCOMSATS University Islamabad Abbottabad Campus Abbottabad Pakistan
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Hong‐Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of ChemistryChinese Academy of Sciences Beijing China
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Yahia Nasser Mabkhot
- Department of Pharmaceutical Chemistry, College of PharmacyKing Khalid University Abha Saudi Arabia
| | - Abdulrahman Alsayari
- Department of Pharmacognosy, College of PharmacyKing Khalid University Abha Saudi Arabia
| | | | - Ayesha Khan
- School of Chemical and Physical SciencesVictoria University of Wellington Wellington New Zealand
| |
Collapse
|
7
|
Carpinelli de Jesus M, Hungerford NL, Carter SJ, Anuj SR, Blanchfield JT, De Voss JJ, Fletcher MT. Pyrrolizidine Alkaloids of Blue Heliotrope ( Heliotropium amplexicaule) and Their Presence in Australian Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7995-8006. [PMID: 31145604 DOI: 10.1021/acs.jafc.9b02136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blue heliotrope (Heliotropium amplexicaule) is an invasive environmental weed that is widely naturalized in eastern Australia and has been implicated as a source of pyrrolizidine alkaloid (PA) poisoning in livestock. Less well-documented is the potential of such carcinogenic alkaloids to contaminate honey from bees foraging on this plant species. In this study, the PA profile of H. amplexicaule plant material, determined by HRAM LC-MS/MS, revealed the presence of nine PAs and PA-N-oxides, including several PAs and PA-N-oxides of the indicine class, which have not previously been reported. The predominant alkaloid, indicine, represents 84% of the reduced PA content, with minor alkaloids identified as intermedine and the newly reported helioamplexine, constituting 7 and 9%, respectively. NMR analysis confirmed the identity of helioamplexine as a previously unreported indicine homologue. This is the first report of the isolation of intermedine, helioamplexine, and 3'-O-angelylindicine from H. amplexicaule. Also described is the identification of N-chloromethyl analogues of the major alkaloids as isolation-derived artifacts from reactions with dichloromethane. Analysis of regional-market honey samples revealed a number of honey samples with PA profiles analogous to that seen in H. amplexicaule, with measured PA contents of up to 2.0 μg of PAs per gram of honey. These results confirm the need for honey producers to be aware of H. amplexicaule as a potential PA source, most particularly in products where honey is sourced from a single location.
Collapse
Affiliation(s)
| | | | - Steve J Carter
- Forensic and Scientific Services , Queensland Health , Brisbane , Queensland 4108 , Australia
| | - Shalona R Anuj
- Forensic and Scientific Services , Queensland Health , Brisbane , Queensland 4108 , Australia
| | | | | | | |
Collapse
|
8
|
Kast C, Kilchenmann V, Reinhard H, Bieri K, Zoller O. Pyrrolizidine Alkaloids: The Botanical Origin of Pollen Collected during the Flowering Period of Echium vulgare and the Stability of Pyrrolizidine Alkaloids in Bee Bread. Molecules 2019; 24:E2214. [PMID: 31200507 PMCID: PMC6631664 DOI: 10.3390/molecules24122214] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that pollen products sold as nutritional supplements and used in apitherapy may contain toxic pyrrolizidine alkaloids (PAs) if bees collect pollen from PA-containing plants, such as Echium vulgare. In this study, the botanical origin of pollen from two observation sites was studied. Despite a high PA content in pollen samples that bees collected during E. vulgare's flowering period, bees were found to collect relatively few Echium pollen loads. Thus, the monitoring of pollen loads collected at the apiaries is unviable to estimate the risk of PA contamination in pollen or bee bread. In a second step, the stability of PAs in bee bread samples containing PAs at concentrations of 2538 ng/g and 98 ng/g was assessed over a period of five or six months, respectively. No significant PA reduction was observed in bee bread stored at 15 °C, but there were overall PA reductions of 39% and 33% in bee bread stored at 30 °C, reflecting hive conditions. While PA N-oxides decreased over time, other types of PAs remained relatively stable. Monitoring PAs in pollen products remains important to ensure consumer safety and should include echivulgarine (and its N-oxide), the major PA type found in pollen from E. vulgare.
Collapse
Affiliation(s)
- Christina Kast
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Verena Kilchenmann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Hans Reinhard
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, 3003 Bern, Switzerland.
| | - Katharina Bieri
- Biologisches Institut für Pollenanalyse K. Bieri GmbH, Talstrasse 23, 3122 Kehrsatz, Switzerland.
| | - Otmar Zoller
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, 3003 Bern, Switzerland.
| |
Collapse
|
9
|
Oliveira RP, Demuner AJ, Alvarenga ES, Barbosa LCA, de Melo Silva T. A novel alkaloid isolated from Crotalaria paulina and identified by NMR and DFT calculations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
|
11
|
Kast C, Kilchenmann V, Reinhard H, Droz B, Lucchetti MA, Dübecke A, Beckh G, Zoller O. Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:316-327. [DOI: 10.1080/19440049.2017.1378443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Hans Reinhard
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland
| | - Benoit Droz
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Matteo Angelo Lucchetti
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Arne Dübecke
- Quality Services International GmbH (QSI), Bremen, Germany
| | - Gudrun Beckh
- Quality Services International GmbH (QSI), Bremen, Germany
| | - Otmar Zoller
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland
| |
Collapse
|
12
|
Robertson J, Stevens K. Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis. Nat Prod Rep 2017; 34:62-89. [PMID: 27782262 DOI: 10.1039/c5np00076a] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Covering: 2013 up to the end of 2015This review covers the isolation and structure of new pyrrolizidines; pyrrolizidine biosynthesis; biological activity, including the occurrence of pyrrolizidines as toxic components or contaminants in foods and beverages; and formal and total syntheses of naturally-occurring pyrrolizidine alkaloids and closely related non-natural analogues.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kiri Stevens
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
13
|
Grimblat N, Sarotti AM. Computational Chemistry to the Rescue: Modern Toolboxes for the Assignment of Complex Molecules by GIAO NMR Calculations. Chemistry 2016; 22:12246-61. [DOI: 10.1002/chem.201601150] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nicolas Grimblat
- Instituto de Química Rosario CONICET Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Suipacha 531 Rosario 2000) Argentina
| | - Ariel M. Sarotti
- Instituto de Química Rosario CONICET Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Suipacha 531 Rosario 2000) Argentina
| |
Collapse
|