1
|
Fedeli R, Dichiara M, Carullo G, Tudino V, Gemma S, Butini S, Campiani G, Loppi S. Unlocking the potential of biostimulants in sustainable agriculture: Effect of wood distillate on the nutritional profiling of apples. Heliyon 2024; 10:e37599. [PMID: 39315190 PMCID: PMC11417550 DOI: 10.1016/j.heliyon.2024.e37599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
In this work, we report the investigation of the effect of exposure of apple trees to the bioeffector wood distillate (WD), a plant biostimulant used for improving the nutritional profiling of crop plants. We measured the effect by evaluating the biochemical and nutritional profile of both pulps and skin of fruits. WD (0.2 %, v/v) was applied once a week by foliar application, from May 2023 until September 2023. The results indicate that the WD-treated apples have a significant increase in several analyzed parameters (i.e., phenols, flavonoids, tannins, total antioxidant power, sugars, pectin, free amino acids, and mineral element content), especially in the pulp. These data were also confirmed by NMR and LC-ESI-MS techniques. This study pointed out that WD could be a handy tool for the cultivation of fruit trees.
Collapse
Affiliation(s)
- Riccardo Fedeli
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Maria Dichiara
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Gabriele Carullo
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Valeria Tudino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Sandra Gemma
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Stefania Butini
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Giuseppe Campiani
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Stefano Loppi
- BioAgry Lab, Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Mascellani Bergo A, Leiss K, Havlik J. Twenty Years of 1H NMR Plant Metabolomics: A Way Forward toward Assessment of Plant Metabolites for Constitutive and Inducible Defenses to Biotic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8332-8346. [PMID: 38501393 DOI: 10.1021/acs.jafc.3c09362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Metabolomics has become an important tool in elucidating the complex relationship between a plant genotype and phenotype. For over 20 years, nuclear magnetic resonance (NMR) spectroscopy has been known for its robustness, quantitative capabilities, simplicity, and cost-efficiency. 1H NMR is the method of choice for analyzing a broad range of relatively abundant metabolites, which can be used for both capturing the plant chemical profile at one point in time and understanding the pathways that underpin plant defense. This systematic Review explores how 1H NMR-based plant metabolomics has contributed to understanding the role of various compounds in plant responses to biotic stress, focusing on both primary and secondary metabolites. It clarifies the challenges and advantages of using 1H NMR in plant metabolomics, interprets common trends observed, and suggests guidelines for method development and establishing standard procedures.
Collapse
Affiliation(s)
- Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| | - Kirsten Leiss
- Business Unit Greenhouse Horticulture, Wageningen University & Research, 2665MV Bleiswijk, Netherlands
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| |
Collapse
|
3
|
NMR Characterization of Ten Apple Cultivars from the Piedmont Region. Foods 2021; 10:foods10020289. [PMID: 33535442 PMCID: PMC7912530 DOI: 10.3390/foods10020289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
The metabolite profile of ten traditional apple cultivars grown in the Piedmont region (Italy) was studied by means of nuclear magnetic resonance spectroscopy, identifying an overall number of 36 compounds. A more complete assignment of the proton nuclear magnetic resonance (1H NMR) resonances from hydroalcoholic and organic apple extracts with respect to literature data was reported, identifying fructose tautomeric forms, galacturonic acid, γ-aminobutyric acid (GABA), p-coumaroyl moiety, phosphatidylcholine, and digalactosyldiacylglycerol. The chemical profile of each apple cultivar was defined by thorough quantitative NMR analysis of four sugars (fructose, glucose, sucrose, and xylose), nine organic acids (acetic, citric, formic, citramalic, lactic, malic, quinic, and galacturonic acids), six amino acids (alanine, asparagine, aspartate, GABA, isoleucine, and valine), rhamnitol, p-coumaroyl derivative, phloretin/phloridzin and choline, as well as β-sitosterol, fatty acid chains, phosphatidylcholine, and digalactosyldiacylglycerol. Finally, the application of PCA analysis allowed us to highlight possible differences/similarities. The Magnana cultivar showed the highest content of sugars, GABA, valine, isoleucine, and alanine. The Runsé cultivar was characterized by high amounts of organic acids, whereas the Gamba Fina cultivar showed a high content of chlorogenic acid. A significant amount of quinic acid was detected in the Carla cultivar. The knowledge of apple chemical profiles can be useful for industries interested in specific compounds for obtaining ingredients of food supplements and functional foods and for promoting apple valorization and preservation.
Collapse
|
4
|
NMR-Based Metabolomic Comparison of Brassica oleracea (Var. italica): Organic and Conventional Farming. Foods 2020; 9:foods9070945. [PMID: 32708866 PMCID: PMC7404451 DOI: 10.3390/foods9070945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Brassicaceae family provides several crops which are worldwide known for their interesting phytochemical profiles, especially in terms of content of glucosinolates. These secondary metabolites show several beneficial effects toward consumers’ health, and several studies have been conducted to identify cultivation factors affecting their content in crops. One of the agronomic practices which is attracting growing interest is the organic one, which consists in avoiding the use of mineral fertilizers as well as pesticides. The aim of this study is to define the metabolic profile of Brassicaoleracea (var. italica) and to compare the samples grown using organic and conventional fertilization methods. The hydroalcoholic and organic extracts of the samples have been analyzed by NMR spectroscopy. Forty-seven metabolites belonging to the categories of organic acids, amino acids, carbohydrates, fatty acids, sterols, and other molecules have been identified. Thirty-seven metabolites have been quantified. Univariate and multivariate PCA analyses allowed to observe that the organic practice influenced the nitrogen transport, the carbohydrate metabolism, the glucosinolate content and the phenylpropanoid pathway in B. oleracea (var. italica).
Collapse
|
5
|
Sciubba F, Di Cocco ME, Angori G, Spagnoli M, De Salvador FR, Engel P, Delfini M. NMR-based metabolic study of leaves of three species of Actinidia with different degrees of susceptibility to Pseudomonas syringae pv. actinidiae. Nat Prod Res 2019; 34:2043-2050. [PMID: 30810363 DOI: 10.1080/14786419.2019.1574784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial canker of Actinidia, caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), is the most serious disease of these plants worldwide. Leaves of three species of Actinidia, namely A. chinensis var. chinensis, A. chinensis var. deliciosa and A. arguta, having different degrees of tolerance to Psa, were analyzed by Nuclear Magnetic Resonance spectroscopy. Aqueous extracts of leaves were studied and several metabolites, classified as organic acids, amino acids, carbohydrates, phenols and other metabolites, were identified by 1D and 2D NMR experiments and quantified. The metabolic profiles of these species were compared through univariate statistical analysis ANOVA and multivariate PCA. Levels of metabolites with known antibacterial activity, such as caffeic and chlorogenic acids, were observed to be higher in the A. arguta samples. Moreover, these metabolites have different Pearson correlation patterns among the three Actinidia species, suggesting a difference at the phenylpropanoid biosynthetic pathway.
Collapse
Affiliation(s)
- Fabio Sciubba
- Department of Chemistry, University of Rome Sapienza, Rome, Italy
| | | | - Giulia Angori
- Department of Chemistry, University of Rome Sapienza, Rome, Italy
| | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Italy
| | | | - Petra Engel
- Citrus and Fruit Trees, CREA - Research Centre for Olive, Rome, Italy
| | - Maurizio Delfini
- Department of Chemistry, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
6
|
Sarkate A, Saini SS, Teotia D, Gaid M, Mir JI, Roy P, Agrawal PK, Sircar D. Comparative metabolomics of scab-resistant and susceptible apple cell cultures in response to scab fungus elicitor treatment. Sci Rep 2018; 8:17844. [PMID: 30552373 PMCID: PMC6294756 DOI: 10.1038/s41598-018-36237-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/16/2018] [Indexed: 01/13/2023] Open
Abstract
Apple scab disease caused by the fungus Venturia inaequalis is a devastating disease that seriously affects quality and yield of apples. In order to understand the mechanisms involved in scab resistance, we performed gas chromatography-mass spectrometry based metabolomics analysis of the cell culture of scab resistant cultivar 'Florina' and scab susceptible cultivar 'Vista Bella' both prior -to and -following treatment with V. inaequalis elicitor (VIE). A total 21 metabolites were identified to be altered significantly in 'Florina' cell cultures upon VIE-treatment. Among 21 metabolites, formation of three new specialized metabolites aucuparin, noraucuparin and eriobofuran were observed only in resistant cultivar 'Florina' after the elicitor treatment. The score plots of principal component analysis (PCA) exhibited clear discrimination between untreated and VIE-treated samples. The alteration in metabolite levels correlated well with the changes in the transcript levels of selected secondary metabolite biosynthesis genes. Aucuparin, noraucuparin and eriobofuran isolated from the 'Florina' cultures showed significant inhibitory effect on the conidial germination of V. inaequalis. The results expand our understanding of the metabolic basis of scab-resistance in apple and therefore are of interest in apple breeding programs to fortify scab resistance potential of commercially grown apple cultivars.
Collapse
Affiliation(s)
- Amol Sarkate
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Deepa Teotia
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Javid Iqbal Mir
- Plant Biotechnology Department, Central Institute of Temperate Horticulture (ICAR-CITH) Srinagar, 190 005, J&K, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Debabrata Sircar
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
7
|
Untargeted NMR Spectroscopic Analysis of the Metabolic Variety of New Apple Cultivars. Metabolites 2016; 6:metabo6030029. [PMID: 27657148 PMCID: PMC5041128 DOI: 10.3390/metabo6030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Metabolome analyses by NMR spectroscopy can be used in quality control by generating unique fingerprints of different species. Hundreds of components and their variation between different samples can be analyzed in a few minutes/hours with high accuracy and low cost of sample preparation. Here, apple peel and pulp extracts of a variety of apple cultivars were studied to assess their suitability to discriminate between the different varieties. The cultivars comprised mainly newly bred varieties or ones that were brought onto the market in recent years. Multivariate analyses of peel and pulp extracts were able to unambiguously identify all cultivars, with peel extracts showing a higher discriminative power. The latter was increased if the highly concentrated sugar metabolites were omitted from the analysis. Whereas sugar concentrations lay within a narrow range, polyphenols, discussed as potential health promoting substances, and acids varied remarkably between the cultivars.
Collapse
|