1
|
Ghazani SM, Guedes AMM, Antoniassi R, Chiu MC, Marangoni AG. Cocoa butter equivalent from
Kpangnan
butter and
Pequi
oil. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saeed M. Ghazani
- Department of Food Science University of Guelph Guelph Ontario Canada
| | | | | | | | | |
Collapse
|
2
|
Cornelio-Santiago HP, Bodini RB, Mazalli MR, Gonçalves CB, Rodrigues CE, Lopes de Oliveira A. Oil extraction from pequi (Caryocar brasiliensis Camb.) and sacha inchi (Plukenetia huayllabambana sp. Nov.) almonds by pressurized liquid with intermittent purge: The effects of variables on oil yield and composition. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Brito RM, Barcia MT, Farias CAA, Zambiazi RC, de Marchi PGF, Fujimori M, Honorio-França AC, França EL, Pertuzatti PB. Bioactive compounds of pequi pulp and oil extracts modulate antioxidant activity and antiproliferative activity in cocultured blood mononuclear cells and breast cancer cells. Food Nutr Res 2022; 66:8282. [PMID: 35173567 PMCID: PMC8809075 DOI: 10.29219/fnr.v66.8282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
Background Pequi (Caryocar brasiliense Camb.) is a fruit from Brazilian Cerrado rich in bioactive compounds, such as phytosterols and tocopherols, which can modulate the death of cancer cells. Objective In the present study, the main bioactive compounds of hydrophilic and lipophilic extracts of pequi oil and pulp were identified and were verified if they exert modulatory effects on oxidative stress of mononuclear cells cocultured with MCF-7 breast cancer cells. Study design Identification and quantification of the main compounds and classes of bioactive compounds in pequi pulp and oil, hydrophilic, and lipophilic extracts were performed using spectroscopy and liquid chromatographic methods, while the beneficial effects, such as antioxidant capacity in vitro, were determined using methods based on single electron transfer reaction or hydrogen atom transfer, while for antioxidant and antiproliferative activities ex vivo, 20 healthy volunteers were recruited. Human peripheral blood mononuclear cells (MN) were collected, and cellular viability assay by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide), superoxide anion evaluation, and CuZn-superoxide dismutase determination (CuZn-SOD) in MN cells, MCF-7 cells, and coculture of MN cells and MCF-7 cells in the presence and absence of pequi pulp or oil hydrophilic and lipophilic extracts were performed. Results In the hydrophilic extract, the pequi pulp presented the highest phenolic content, while in the oil lipophilic extract, it had the highest content of carotenoids. The main phytosterol in pequi oil was β-sitosterol (10.22 mg/g), and the main tocopherol was γ-tocopherol (26.24 μg/g sample). The extracts that had highest content of bioactive compounds stimulated blood mononuclear cells and also improved SOD activity. By evaluating the extracts against MCF-7 cells and coculture, they showed cytotoxic activity. Conclusion The results support the anticarcinogenic activity of pequi extracts, in which the pequi pulp hydrophilic extracts presented better immunomodulatory potential.
Collapse
Affiliation(s)
- Renata Moraes Brito
- Programa de Pós-Graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Campus Universitário do Araguaia, Barra do Garças, Brazil
| | - Milene Teixeira Barcia
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Carla Andressa Almeida Farias
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Rui Carlos Zambiazi
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Patrícia Gelli Feres de Marchi
- Programa de Pós-Graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Campus Universitário do Araguaia, Barra do Garças, Brazil
| | - Mahmi Fujimori
- Programa de Pós-Graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Campus Universitário do Araguaia, Barra do Garças, Brazil
| | - Adenilda Cristina Honorio-França
- Programa de Pós-Graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Campus Universitário do Araguaia, Barra do Garças, Brazil
| | - Eduardo Luzia França
- Programa de Pós-Graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Campus Universitário do Araguaia, Barra do Garças, Brazil
| | - Paula Becker Pertuzatti
- Programa de Pós-Graduação em Imunologia e Parasitologia Básicas e Aplicadas, Universidade Federal de Mato Grosso, Campus Universitário do Araguaia, Barra do Garças, Brazil
- Paula Becker Pertuzatti, Av. Valdon Varjao 6390, Setor Industrial,78600-000, Barra do Garças, MT, Brazil. Tel: +55 66 34020733.
| |
Collapse
|
4
|
SIQUEIRA RA, VERAS JML, SOUSA TLD, FARIAS PMD, OLIVEIRA FILHO JGD, BERTOLO MRV, EGEA MB, PLÁCIDO GR. Pequi mesocarp: a new source of pectin to produce biodegradable film for application as food packaging. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.71421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Res Int 2021; 139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
6
|
Cornelio‐Santiago HP, Bodini RB, Oliveira AL. Potential of Oilseeds Native to Amazon and Brazilian Cerrado Biomes: Benefits, Chemical and Functional Properties, and Extraction Methods. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heber P. Cornelio‐Santiago
- Laboratory of High‐Pressure Technology and Natural Products (LAPPN), Department of Food Engineering (ZEA‐FZEA) University of São Paulo (USP) P.O. Box 23 Pirassununga SP 13635‐900 Brazil
| | - Renata Barbosa Bodini
- Laboratory of High‐Pressure Technology and Natural Products (LAPPN), Department of Food Engineering (ZEA‐FZEA) University of São Paulo (USP) P.O. Box 23 Pirassununga SP 13635‐900 Brazil
| | - Alessandra Lopes Oliveira
- Laboratory of High‐Pressure Technology and Natural Products (LAPPN), Department of Food Engineering (ZEA‐FZEA) University of São Paulo (USP) P.O. Box 23 Pirassununga SP 13635‐900 Brazil
| |
Collapse
|
7
|
de Sá Coutinho D, Pires J, Gomes H, Raffin Pohlmann A, Stanisçuaski Guterres S, Rodrigues e Silva PM, Martins MA, Ferrarini SR, Bernardi A. Pequi ( Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 2020; 12:pharmaceutics12111075. [PMID: 33187057 PMCID: PMC7696187 DOI: 10.3390/pharmaceutics12111075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Pequi is a Brazilian fruit used in folk medicine for pulmonary diseases treatment, but its oil presents bioavailability limitations. The use of nanocarriers can overcome this limitation. We developed nanoemulsions containing pequi oil (pequi-NE) and evaluated their effects in a lipopolysaccharide (LPS)-induced lung injury model. Free pequi oil or pequi-NE (20 mg/kg) was orally administered to A/J mice 16 and 4 h prior to intranasal LPS exposure, and the analyses were performed 24 h after LPS provocation. The physicochemical results revealed that pequi-NE comprised particles with mean diameter of 174–223 nm, low polydispersity index (0.11 ± 0.01), zeta potential of −7.13 ± 0.08 mV, and pH of 5.83 ± 0.12. In vivo evaluation showed that free pequi oil pretreatment reduced the influx of inflammatory cells into bronchoalveolar fluid (BALF), while pequi-NE completely abolished leukocyte accumulation. Moreover, pequi-NE, but not free pequi oil, reduced myeloperoxidase (MPO), TNF-α, IL-1β, IL-6, MCP-1, and KC levels. Similar anti-inflammatory effects were observed when LPS-exposed animals were pre-treated with the nanoemulsion containing pequi or oleic acid. These results suggest that the use of nanoemulsions as carriers enhances the anti-inflammatory properties of oleic acid-containing pequi oil. Moreover, pequi’s beneficial effect is likely due its high levels of oleic acid.
Collapse
Affiliation(s)
- Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Jader Pires
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
| | - Hyago Gomes
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | | | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Marco Aurelio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Stela Regina Ferrarini
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
- Correspondence: (S.R.F.); (A.B.)
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
- Correspondence: (S.R.F.); (A.B.)
| |
Collapse
|
8
|
Characterization and authentication of olive, camellia and other vegetable oils by combination of chromatographic and chemometric techniques: role of fatty acids, tocopherols, sterols and squalene. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03635-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Miranda MRDS, Veras CAG, Ghesti GF. Charcoal production from waste pequi seeds for heat and power generation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 103:177-186. [PMID: 31887690 DOI: 10.1016/j.wasman.2019.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Many specialized technologies are available to convert waste biomass into secondary products that have a higher value and are more convenient to process than the original feedstock. This study evaluated the potential of waste pequi seeds to produce high-quality charcoal for subsequent gasification into low-tar producer gas for heat engine applications. We focused on the characterization of pequi seeds, the derived charcoal, and the collected bio-oil from slow pyrolysis conversion of the feedstock. Thermodynamic equilibrium calculations were conducted to assess gasification performance of the parent biomass and its charcoal. We also investigated the thermal degradation kinetics of pequi seeds through non-isothermal thermogravimetric analysis. Finally, a two-step energy-extraction analysis was performed for the carbonization of the parent biomass and further utilization of its charcoal in an integrated gasification gas-engine cycle. Slow pyrolysis of pequi seeds (2 °C min-1, 430 °C) produced up to 40% of high-grade charcoal with 60% fixed carbon, 43% of bio-oil, and 16% of light gases. The overall energy extraction efficiency was estimated as 61%, based on the higher heating value of wet pequi seeds. The investigation confirmed that waste pequi seeds could be considered a promising renewable energy source for combined heat and power generation for the Brazilian agro-food industry.
Collapse
Affiliation(s)
- Mara Rúbia da Silva Miranda
- Universidade de Brasília - Faculdade de Tecnologia - Departamento de Engenharia Mecânica, Caixa Postal 4357, Brasília-DF 70910-900, Brazil.
| | - Carlos Alberto Gurgel Veras
- Universidade de Brasília - Faculdade de Tecnologia - Departamento de Engenharia Mecânica, Caixa Postal 4357, Brasília-DF 70910-900, Brazil.
| | - Grace Ferreira Ghesti
- Universidade de Brasília - Instituto de Química, Caixa Postal 4357, Brasília-DF 70910-900, Brazil.
| |
Collapse
|
10
|
Esteki M, Shahsavari Z, Simal-Gandara J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Esteki
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Z. Shahsavari
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo – Ourense Campus, Ourense, Spain
| |
Collapse
|
11
|
Souza MR, de Carvalho RK, de Carvalho LS, de Sá S, Andersen ML, de Araújo EG, Mazaro-Costa R. Effects of subchronic exposure to Caryocar brasiliense peel ethanolic extract on male reproductive functions in Swiss mice. Reprod Toxicol 2019; 87:118-124. [PMID: 31201951 DOI: 10.1016/j.reprotox.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
This study evaluated the effects of subchronic exposure to Caryocar brasiliense peel ethanolic extract (CBPE) on reproductive function in male Swiss mice. CBPE was administered orally for 28 days at doses of 75, 150 and 300 mg.kg-1 bw; control group received saline. Fertility test was performed after 14 days of treatment and animals were euthanized after the end of the 28-day period for evaluation of the reproductive parameters. The tested doses produced no significant changes in plasma testosterone levels, daily sperm production, sperm concentration, sperm morphology or fertility rate. However, sperm transit time was reduced in the caput/corpus epididymis, the post-implantation loss rate increased and there were significant changes in spermatogenic dynamics at the highest dose. These results indicated that subchronic exposure to CBPE has low reproductive toxicity, but additional studies are recommended to provide evidence of long-term safety at high concentrations.
Collapse
Affiliation(s)
| | | | | | - Stone de Sá
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiás, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
12
|
Rabbers A, Rabelo R, Oliveira L, Ribeiro M, Martins V, Plepis A, Vulcani V. Additive effect of pulp pequi oil (Caryocar brasiliense Camb.) on the biocompatibility of collagen and gelatin membranes in subcutaneous implants. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Trauma or disease inflicted by tissue injuries may cause tissue degeneration. The use of biomaterials for direct or indirect repair has emerged as a promising alternative, and has become an important research topic. The pequi fruit (Caryocar brasiliense Camb.) has shown antifungal, antibacterial, anti-inflammatory, healing, antitumor, and antioxidant properties. The objective of this study was to develop a new biomaterial using a combination of collagen, gelatin, and pulp pequi oil, and to evaluate its biocompatibility in comparison with that of biomaterials produced without pulp pequi oil. Membranes were prepared from a mixture of bovine tendon collagen, commercial gelatin, and pulp pequi oil. The inflammatory and cicatricial processes were assessed via histopathology of the tissue interface/implants in the subcutaneous tissues and quantitative evaluation of leukocyte and collagen production in Wistar rats. It was observed that the presence of pequi oil reduced the amount of foreign-body giant cells and favored the recruitment of fibroblasts (P< 0.01), thereby promoting greater production of collagen membrane than that in the membranes of control samples. Therefore, it can be concluded that the addition of pequi oil improved the biocompatibility of collagen and accelerated the healing process.
Collapse
|
13
|
Guedes AMM, Antoniassi R, Galdeano MC, Grimaldi R, Carvalho MGD, Wilhelm AE, Marangoni AG. Length-scale Specific Crystalline Structural Changes Induced by Molecular Randomization of Pequi Oil. J Oleo Sci 2017; 66:469-478. [PMID: 28413191 DOI: 10.5650/jos.ess16192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pequi fruit (Caryocar brasiliense Camb) is considered important since its pulp has a high content of oil and carotenoids. The oil's triacylglycerols (TAGs) contain mainly oleic (~57%) and palmitic (~36%) fatty acids, distributed primarily among POO, POP/PPO, and OOO TAGs. It displays a tendency to fractionate upon storage and has a relatively low melting temperature (SFC of 4% at 25°C). Pequi oil was modified through chemical interesterification, which increased the PPP content to ~6%. This caused a flattening in the SFC-temperature profile, raising the end of melt temperature significantly (SFC of 4% at 39°C). The interesterified oil does not fractionate and is thermally stable up to 40°C, with an SFC-temperature profile resembling that of roll-in shortening (SFC of 31% at 16°C) despite containing high amounts of oleic acid. Crystallization and melting behavior changed. Crystal packing became more disorganized as evidenced by a significant decrease in crystalline domain size in the [001] direction from 42.3 nm to 32.1 nm. Polymorphism remained of the triclinic (β) subcell type but polytypism changed from the 3L to the 2L type. Polarized light microscopy demonstrated that interesterification dramatically decreased crystal size, consistent with a higher rate of nucleation in the material. Moreover, the dramatic improvement in physical stability and functionality was not accompanied by a significant decrease in total carotenoid content (~390 mg/kg).
Collapse
|