1
|
Advanced Glycation End Products: New Clinical and Molecular Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147236. [PMID: 34299683 PMCID: PMC8306599 DOI: 10.3390/ijerph18147236] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
Collapse
|
2
|
Mayor D, Panday D, Kandel HK, Steffert T, Banks D. CEPS: An Open Access MATLAB Graphical User Interface (GUI) for the Analysis of Complexity and Entropy in Physiological Signals. ENTROPY 2021; 23:e23030321. [PMID: 33800469 PMCID: PMC7998823 DOI: 10.3390/e23030321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND We developed CEPS as an open access MATLAB® GUI (graphical user interface) for the analysis of Complexity and Entropy in Physiological Signals (CEPS), and demonstrate its use with an example data set that shows the effects of paced breathing (PB) on variability of heart, pulse and respiration rates. CEPS is also sufficiently adaptable to be used for other time series physiological data such as EEG (electroencephalography), postural sway or temperature measurements. METHODS Data were collected from a convenience sample of nine healthy adults in a pilot for a larger study investigating the effects on vagal tone of breathing paced at various different rates, part of a development programme for a home training stress reduction system. RESULTS The current version of CEPS focuses on those complexity and entropy measures that appear most frequently in the literature, together with some recently introduced entropy measures which may have advantages over those that are more established. Ten methods of estimating data complexity are currently included, and some 28 entropy measures. The GUI also includes a section for data pre-processing and standard ancillary methods to enable parameter estimation of embedding dimension m and time delay τ ('tau') where required. The software is freely available under version 3 of the GNU Lesser General Public License (LGPLv3) for non-commercial users. CEPS can be downloaded from Bitbucket. In our illustration on PB, most complexity and entropy measures decreased significantly in response to breathing at 7 breaths per minute, differentiating more clearly than conventional linear, time- and frequency-domain measures between breathing states. In contrast, Higuchi fractal dimension increased during paced breathing. CONCLUSIONS We have developed CEPS software as a physiological data visualiser able to integrate state of the art techniques. The interface is designed for clinical research and has a structure designed for integrating new tools. The aim is to strengthen collaboration between clinicians and the biomedical community, as demonstrated here by using CEPS to analyse various physiological responses to paced breathing.
Collapse
Affiliation(s)
- David Mayor
- School of Health and Social Work, University of Hertfordshire, Hatfield AL10 9AB, UK
- Correspondence:
| | - Deepak Panday
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Hari Kala Kandel
- Department of Computing, Goldsmiths College, University of London, New Cross, London SE14 6NW, UK;
| | - Tony Steffert
- MindSpire, Napier House, 14-16 Mount Ephraim Rd, Tunbridge Wells TN1 1EE, UK;
- School of Life, Health and Chemical Sciences, Walton Hall, The Open University, Milton Keynes MK7 6AA, UK;
| | - Duncan Banks
- School of Life, Health and Chemical Sciences, Walton Hall, The Open University, Milton Keynes MK7 6AA, UK;
| |
Collapse
|
3
|
Marzano V, Tilocca B, Fiocchi AG, Vernocchi P, Levi Mortera S, Urbani A, Roncada P, Putignani L. Perusal of food allergens analysis by mass spectrometry-based proteomics. J Proteomics 2020; 215:103636. [DOI: 10.1016/j.jprot.2020.103636] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
|
4
|
Jappe U, Schwager C, Schromm AB, González Roldán N, Stein K, Heine H, Duda KA. Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Front Immunol 2019; 10:122. [PMID: 30837983 PMCID: PMC6382701 DOI: 10.3389/fimmu.2019.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several-in parts conflicting-data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Borstel, Germany
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Andra B. Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Karina Stein
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Katarzyna A. Duda
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| |
Collapse
|
5
|
Asha Madhavan A, Juneja S, Sen P, Ghosh Moulick R, Bhattacharya J. Gold Nanoparticle-Based Detection of Low Molecular Weight AGEs from In Vitro Glycated Haemoglobin A0 Samples. NANOSCALE RESEARCH LETTERS 2018; 13:390. [PMID: 30511188 PMCID: PMC6277258 DOI: 10.1186/s11671-018-2812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Protein glycation is a major biochemical event that takes place in the plasma of diabetic patients due to increased sugar levels. Extensive glycation leads to the formation of advanced glycation end products (AGEs) that is well known for having detrimental effects on diabetic patients. In the current work, we have glycated the physiologically important protein Haemoglobin A0 in vitro to study AGE formation and activity by using them as a template for gold nanoparticle (GNPs) synthesis. It was found that the surface plasmon resonance of synthesised GNPs showed high correlation with the extent of glycation. On fractionation, the glycated Haemoglobin A0 segregated into two distinct population of products, one consisting of proteinaceous, cross-linked larger fragments of Haemoglobin A0 and a second population of non-proteinaceous low molecular weight AGEs. Only low molecular weight AGEs contributed to synthesis of GNPs upon using the fractions as a template, substantiating the principle of proposed GNP-based assay. Owing to its physiological importance, AGEs can be used as a diagnostic means for diabetes and its associated complications. In this study, we have employed the high reactivity of AGEs for the development of a GNP-based novel colorimetric sensor to enable their detection. Our proposed GNP-based sensing could have high clinical significance in detecting diabetes and its associated complexities.
Collapse
Affiliation(s)
- A. Asha Madhavan
- School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - S. Juneja
- School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - P. Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - R. Ghosh Moulick
- Amity Institute of Integrative sciences and Health, Amity University Gurgaon, Manesar, Haryana 122413 India
| | - J. Bhattacharya
- School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| |
Collapse
|
6
|
Jeurink PV, Knipping K, Wiens F, Barańska K, Stahl B, Garssen J, Krolak-Olejnik B. Importance of maternal diet in the training of the infant's immune system during gestation and lactation. Crit Rev Food Sci Nutr 2018; 59:1311-1319. [PMID: 29393671 DOI: 10.1080/10408398.2017.1405907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Latest forecasts predict that half of the European population will be allergic within the coming 15 years, with food allergies contributing substantially to the total burden; preventive measures are urgently needed. Unfortunately, all attempted alimentary strategies for primary prevention of allergic diseases through allergen avoidance so far have failed. This also holds true for the prevention of food allergies in breastfed infants by the common practice of excluding certain foods with allergenic potential from the maternal diet. As a preventive measure, therefore, exclusion diets should be discouraged. They can exhaust nursing mothers and negatively impact both their nutritional status as well as their motivation to breastfeed. A prolonged exclusion diet may be indicated solely in cases of doctor-diagnosed food allergy following rigid medical tests (e.g. double-blind placebo-controlled food challenges). Indicated cases usually involve exclusion of only a few food items. Continued breastfeeding is generally important for many aspects of the infant's health, including the training of the infant's immune responses to foreign compounds and avoidance of overshooting inflammatory responses. Recent studies suggest that the presence of maternal dietary proteins in amniotic fluid, cord blood, and human milk might support the induction of tolerance towards solid foods in infants. These are exactly the same species of proteins or remnants thereof that, in comparatively few cases, trigger allergic responses. However, the insight that the proteins of maternal dietary origin in human milk are more likely to be cure (or, more precise, directing prevention) than curse has still largely evaded the attention of health care professionals consulted by worried breastfeeding mothers. In this paper, we summarize recent literature on the importance of exposure to dietary proteins in the establishment of immunological tolerance and hence prevention of allergic disease. Multiple organizations have used the scientific knowledge to build (local) guidelines (e.g. AAAAI, EAACI, BSACI) that can support health care professionals to provide the best strategy to prevent the onset of allergic diseases. We thus hope to clarify existing confusion about the allergenic propensities of dietary proteins during early life, which has contributed to exaggerated fears around the diet of pregnant and breastfeeding mothers.
Collapse
Affiliation(s)
- P V Jeurink
- a Nutricia Research , Utrecht , the Netherlands.,b Division of Pharmacology, Department of Pharmaceutical Sciences , Faculty of Science, Utrecht University , the Netherlands
| | - K Knipping
- a Nutricia Research , Utrecht , the Netherlands.,b Division of Pharmacology, Department of Pharmaceutical Sciences , Faculty of Science, Utrecht University , the Netherlands
| | - F Wiens
- a Nutricia Research , Utrecht , the Netherlands
| | - K Barańska
- c Department of Neonatology , Wroclaw Medical University , Wroclaw , Poland
| | - B Stahl
- a Nutricia Research , Utrecht , the Netherlands
| | - J Garssen
- a Nutricia Research , Utrecht , the Netherlands.,b Division of Pharmacology, Department of Pharmaceutical Sciences , Faculty of Science, Utrecht University , the Netherlands
| | - B Krolak-Olejnik
- c Department of Neonatology , Wroclaw Medical University , Wroclaw , Poland
| |
Collapse
|
7
|
Mazzucchelli G, Holzhauser T, Cirkovic Velickovic T, Diaz‐Perales A, Molina E, Roncada P, Rodrigues P, Verhoeckx K, Hoffmann‐Sommergruber K. Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Mol Nutr Food Res 2018; 62:1700278. [PMID: 28925060 PMCID: PMC5814866 DOI: 10.1002/mnfr.201700278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Indexed: 01/08/2023]
Abstract
Food allergies are recognized as a global health concern. In order to protect allergic consumers from severe symptoms, allergenic risk assessment for well-known foods and foods containing genetically modified ingredients is installed. However, population is steadily growing and there is a rising need to provide adequate protein-based foods, including novel sources, not yet used for human consumption. In this context safety issues such as a potential increased allergenic risk need to be assessed before marketing novel food sources. Therefore, the established allergenic risk assessment for genetically modified organisms needs to be re-evaluated for its applicability for risk assessment of novel food proteins. Two different scenarios of allergic sensitization have to be assessed. The first scenario is the presence of already known allergenic structures in novel foods. For this, a comparative assessment can be performed and the range of cross-reactivity can be explored, while in the second scenario allergic reactions are observed toward so far novel allergenic structures and no reference material is available. This review summarizes the current analytical methods for allergenic risk assessment, highlighting the strengths and limitations of each method and discussing the gaps in this assessment that need to be addressed in the near future.
Collapse
Affiliation(s)
- Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry – MolSysDepartment of ChemistryUniversity of LiegeLiegeBelgium
| | | | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food SciencesUniversity of Belgrade – Faculty of ChemistryBelgradeSerbia
- Ghent University Global CampusYeonsu‐guIncheonSouth Korea
| | | | | | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro SpallanzaniMilanoItaly
| | - Pedro Rodrigues
- CCMARCenter of Marine ScienceUniversity of AlgarveFaroPortugal
| | | | | |
Collapse
|
8
|
Jappe U, Schwager C. Relevance of Lipophilic Allergens in Food Allergy Diagnosis. Curr Allergy Asthma Rep 2017; 17:61. [PMID: 28795292 DOI: 10.1007/s11882-017-0731-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide available data on a new class of allergens, the oleosins, and their diagnostic value. There is evidence that allergen extracts used for in vivo as well as in vitro diagnostic tests do not contain oleosins because these proteins are lipophilic and nearly insoluble in saline or aqueous solutions. So far, only oleosins of peanut, sesame and hazelnut have been registered as allergens. Reports on IgE-binding tests performed with oleosins of different species with sera from allergic patients show that IgE specific for oleosins are associated with severe allergic reactions which is why they should be part of the diagnostic tests in the future. RECENT FINDINGS Recent findings showed that oleosins purified from in shell-roasted peanuts revealed a higher IgE-binding capacity when compared to raw ones. Naturally purified as well as recombinantly produced peanut oleosins can be used in basophil activation test. The synopsis of all reports on different thermal processing of several oleosin sources and the respective data obtained with patients sera investigated via immunoblot and basophil activation test points to the recommendation that-if naturally purified oleosins are used, they should mostly be obtained from roasted food allergen sources. For immunoblot and basophil activation test, both, naturally purified oleosins as well as recombinant modified oleosins are valuable diagnostic tools.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Research Center Borstel, Parkallee 35, 23845, Borstel, Germany. .,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany.
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Research Center Borstel, Parkallee 35, 23845, Borstel, Germany
| |
Collapse
|
9
|
Schwager C, Kull S, Behrends J, Röckendorf N, Schocker F, Frey A, Homann A, Becker WM, Jappe U. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol 2017; 140:1331-1338.e8. [PMID: 28342912 DOI: 10.1016/j.jaci.2017.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Peanut allergy is one of the most common and most severe food allergies in Western countries and its accurate diagnosis to prevent potential life-threatening allergic reactions is crucial. However, aqueous extracts used for routine diagnostic measurements are devoid of lipophilic allergens such as oleosins. We have recently succeeded in the isolation and purification of these unique proteins, and the present study evaluates their allergenic potential and clinical relevance. OBJECTIVE We sought to assess allergenicity and sensitization prevalence of oleosins obtained from both raw and in-shell roasted peanuts. In addition, we tested the utilization of natural and recombinant oleosins for allergy diagnostic purposes. METHODS Oleosin sensitization, prevalence, and impact of thermal processing were analyzed by immunoblot with sera from 52 peanut-allergic individuals displaying different clinical phenotypes. The application of natural and recombinant oleosins for allergy diagnostics was investigated by basophil activation test (BAT). IgE-binding epitopes were identified by oligopeptide microarray. RESULTS Sensitization to oleosins was observed exclusively in peanut-allergic subjects suffering from severe systemic reactions. IgE-binding capacity of oleosins derived from in-shell roasted peanuts was increased as shown by immunoblot analysis and BAT. Both natural and recombinant molecules can be used to identify oleosin-sensitized patients by BAT. A linear epitope of Ara h 15 was determined that displays high similarity to other seed-derived oleosins. CONCLUSIONS Oleosins are clinically relevant peanut allergens and most likely associated with severe allergic symptoms. In-shell roasting increases their allergenicity, which is consistent with the observation that most allergic reactions are in connection with roasted peanuts.
Collapse
Affiliation(s)
- Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Skadi Kull
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Borstel, Germany
| | - Niels Röckendorf
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Frauke Schocker
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Arne Homann
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Wolf-Meinhard Becker
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Priority Research Area Asthma and Allergy, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Internal Medicine, University of Luebeck, Luebeck, Germany.
| |
Collapse
|