1
|
Wang X, Zhao M, Shang P, Liu J, Zhao R. Effect of Microwave Treatment on Protease Activity, Dough Properties and Protein Quality in Sprouted Wheat. Foods 2024; 13:1277. [PMID: 38672949 PMCID: PMC11049177 DOI: 10.3390/foods13081277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, the effects of microwave treatment on protease activity, dough properties and protein quality in sprouted wheat were investigated. Microwave treatment led to a significant (p < 0.05) reduction in protease activity in sprouted wheat. Proteases with a pH optimum of 4.4 (cysteine proteinases) were more susceptible to microwave heating, which contributed mostly to protease inactivation. Significant improvements (p < 0.05) in the dough properties and gluten quality of sprouted wheat were observed, which are probably attributable to the synergistic effectiveness of protease inactivation and heat-induced gluten cross-linking. After microwave treatment, the decrease in the solubility and extractability of protein in sprouted wheat indicated protein polymerization, which was induced by intermolecular disulfide bond cross-linking. The changes in gliadin were less pronounced due to the relatively low temperature of the microwave treatment. The cross-linking in sprouted wheat that occurred after microwave treatment seemed to mainly involve glutenin, especially B/C low-molecular-weight glutenin subunits (B/C-LMW-GSs) in the range of 30-50 kD.
Collapse
Affiliation(s)
- Xiangyu Wang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Mengyuan Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Panpan Shang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing Liu
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
2
|
Wang G, Qu X, Li D, Yang R, Gu Z, Jiang D, Wang P. Enhancing the technofunctionality of γ-aminobutyric acid enriched germinated wheat by modification of arabinoxylan, gluten proteins and liquid lamella of dough. Food Chem 2023; 404:134523. [PMID: 36228476 DOI: 10.1016/j.foodchem.2022.134523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
To enhance the technofunctionality of germinated wheat enriched with γ-aminobutyric acid, xylanase (Xyn) and glucose oxidase (Gox) were incorporated with emphasis on modifying the key components. Combination of Xyn and Gox enhanced steamed bread quality with optimum loaf volume and textural property. Continuous and dense gluten network was facilitated and improved viscoelasticity of dough. Water solubility of arabinoxylan (AX) enhanced with Xyn and the molecular weight was more homogeneous distributed throughout bread making process with Xyn and Gox. Polymerization behavior of α-/γ-gliadin and glutenin was suppressed in steamed bread, while incorporation of AX to insoluble proteins was enhanced by enzymes. In addition, the promoted formation of high molecular weight glycoprotein in the liquid lamella of dough enhanced the thermal stability of foams and contribute to superior quality of steamed bread. Results demonstrated that germinated wheat could be exploited as a functional ingredient with desirable technofunctionality by modification of the components.
Collapse
Affiliation(s)
- Guangzheng Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xu Qu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
3
|
Baranzelli J, Somacal S, Monteiro CS, Mello RDO, Rodrigues E, Prestes OD, López-Ruiz R, Garrido Frenich A, Romero-González R, de Miranda MZ, Emanuelli T. Grain Germination Changes the Profile of Phenolic Compounds and Benzoxazinoids in Wheat: A Study on Hard and Soft Cultivars. Molecules 2023; 28:molecules28020721. [PMID: 36677783 PMCID: PMC9864386 DOI: 10.3390/molecules28020721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Pre-harvest sprouting is a frequent problem for wheat culture that can be simulated by laboratory-based germination. Despite reducing baking properties, wheat sprouting has been shown to increase the bioavailability of some nutrients. It was investigated whether wheat cultivars bearing distinct grain texture characteristics (BRS Guaraim, soft vs. BRS Marcante, hard texture) would have different behavior in terms of the changes in phytochemical compounds during germination. Using LC-Q-TOF-MS, higher contents of benzoxazinoids and flavonoids were found in the hard cultivar than in the soft one. Free phytochemicals, mainly benzoxazinoids, increased during germination in both cultivars. Before germination, soft and hard cultivars had a similar profile of matrix-bound phytochemicals, but during germination, these compounds have been shown to decrease only in the hard-texture cultivar, due to decreased levels of phenolic acids (trans-ferulic acid) and flavonoids (apigenin) that were bound to the cell wall through ester-type bonds. These findings confirm the hypothesis that hard and soft wheat cultivars have distinct behavior during germination concerning the changes in phytochemical compounds, namely the matrix-bound compounds. In addition, germination has been shown to remarkably increase the content of benzoxazinoids and the antioxidant capacity, which could bring a health-beneficial appeal for pre-harvested sprouted grains.
Collapse
Affiliation(s)
- Julia Baranzelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Camila Sant’Anna Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Renius de Oliveira Mello
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Eliseu Rodrigues
- Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Osmar Damian Prestes
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Rosalía López-Ruiz
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Roberto Romero-González
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Martha Zavariz de Miranda
- Grain Quality Laboratory, Brazilian Agricultural Research Corporation-Embrapa Trigo, Passo Fundo 99050-970, Rio Grande do Sul, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
- Correspondence:
| |
Collapse
|
4
|
Kweon M, Slade L, Levine H. Impacts of weathering/pre‐harvest sprouting in the field on the milling and flour quality of soft wheats, and resulting baking performance for soft wheat‐based baked products. Cereal Chem 2022. [DOI: 10.1002/cche.10534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Kweon
- Department of Food Science and Nutrition Pusan National University Busan South Korea
| | - L. Slade
- Food Polymer Science Consultancy Morris Plains New Jersey USA
| | - H. Levine
- Food Polymer Science Consultancy Morris Plains New Jersey USA
| |
Collapse
|
5
|
Influence of weather conditions on the activity and properties of alpha-amylase in maize grains. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Reducing deoxynivalenol content in wheat by a combination of gravity separation and milling and characterization of the flours produced. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
|
8
|
Olaerts H, Courtin CM. Impact of Preharvest Sprouting on Endogenous Hydrolases and Technological Quality of Wheat and Bread: A Review. Compr Rev Food Sci Food Saf 2018; 17:698-713. [PMID: 33350132 DOI: 10.1111/1541-4337.12347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 11/30/2022]
Abstract
The cereal-based food industry faces the challenge to produce food of high and uniform quality to meet consumer demands. However, adverse weather conditions, including prolonged and repeated rainfall, before harvest time evoke germination of the kernels in the ear of the parent plant, which is known as preharvest sprouting (PHS). PHS results in the production of several hydrolytic enzymes in the kernel, which decreases the technological quality of wheat and causes problems during processing of the flour into cereal-based products. Therefore, wheat that is severely sprouted in the field is less suitable for products for human consumption, and is often discounted to animal feed. Up till now, most knowledge on PHS is obtained by research on laboratory-sprouted wheat as a proxy for field-sprouted wheat. Knowledge on PHS in the field itself is more scarce. This review gives a comprehensive overview of the recent findings on PHS of wheat in the field, compared to knowledge on controlled sprouting. The physiological and functional changes occurring in wheat during PHS and their impact on wheat and bread quality are discussed. This review provides a useful background for further research concerning the potential of field-sprouted wheat to be used as raw material in the food industry.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Kiszonas AM, Engle DA, Pierantoni LA, Morris CF. Relationships between Falling Number, α‐amylase activity, milling, cookie, and sponge cake quality of soft white wheat. Cereal Chem 2018. [DOI: 10.1002/cche.10041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alecia M. Kiszonas
- USDA‐ARS Western Wheat Quality Laboratory Washington State University Pullman WA USA
| | - Douglas A. Engle
- USDA‐ARS Western Wheat Quality Laboratory Washington State University Pullman WA USA
| | | | - Craig F. Morris
- USDA‐ARS Western Wheat Quality Laboratory Washington State University Pullman WA USA
| |
Collapse
|
10
|
Ding J, Hou GG, Dong M, Xiong S, Zhao S, Feng H. Physicochemical properties of germinated dehulled rice flour and energy requirement in germination as affected by ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2018; 41:484-491. [PMID: 29137779 DOI: 10.1016/j.ultsonch.2017.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 05/23/2023]
Abstract
Limited data are published regarding changes in the physicochemical properties of rice flours from germinated de-hulled rice treated by ultrasound. This work was undertaken to evaluate the effect of ultrasound treatment (25 kHz, 16 W/L, 5 min) on starch hydrolysis and functional properties of rice flours produced from ultrasound-treated red rice and brown rice germinated for up to 36 h. Environmental Scanning Electron Microscopy (ESEM) microimages showed that the ultrasound treatment altered the surface microstructure of rice, which helped to improve moisture transfer during steam-cooking. The flours from sonicated germinated de-hulled rice exhibited significantly (p < .05) enhanced starch hydrolysis, increased the glucose content, and decreased falling number values and viscosities determined by a Rapid Visco Analyzer. The amylase activity of the germinating red rice and brown rice displayed different sensitivity to ultrasonic treatment. The ultrasonic pre-treatment resulted in a significant reduction in energy use during germination with a potential to further reduce energy use in germinated rice cooking process. The present study indicated that ultrasound could be a low-power consumption method to modify the rheological behavior of germinated rice flour, as well as an efficient approach to improve the texture, flavor, and nutrient properties of steam-cooked germinated rice.
Collapse
Affiliation(s)
- Junzhou Ding
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; College of Food Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gary G Hou
- Wheat Marketing Center, Inc., Portland, OR 97209, USA
| | - Mengyi Dong
- Department of Communication, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shanbai Xiong
- College of Food Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Siming Zhao
- College of Food Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Olaerts H, Vandekerckhove L, Courtin CM. A closer look at the bread making process and the quality of bread as a function of the degree of preharvest sprouting of wheat ( Triticum aestivum ). J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Olaerts H, De Bondt Y, Courtin CM. Density separation as a strategy to reduce the enzyme load of preharvest sprouted wheat and enhance its bread making quality. Food Chem 2018; 241:434-442. [PMID: 28958551 DOI: 10.1016/j.foodchem.2017.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
Abstract
As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Yamina De Bondt
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
13
|
Olaerts H, De Bondt Y, Courtin CM. The heterogeneous distribution of α-amylase and endoxylanase activity over a population of preharvest sprouted wheat kernels and their localization in individual kernels. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Olaerts H, Roye C, Derde LJ, Sinnaeve G, Meza WR, Bodson B, Courtin CM. Impact of Preharvest Sprouting of Wheat (Triticum aestivum) in the Field on Starch, Protein, and Arabinoxylan Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8324-8332. [PMID: 27734675 DOI: 10.1021/acs.jafc.6b03140] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To obtain detailed knowledge on possible changes in the properties of starch, proteins, and arabinoxylan as a result of field preharvest sprouting (PHS), three wheat varieties were harvested at maturity and several weeks later when severe PHS had occurred. Falling number values of flour dropped from 306 to 147 s (Sahara), 382 to 155 s (Forum), and 371 to 230 s (Tobak). Blocking of α-amylase activity demonstrated that the decline in falling number and changes in RVA pasting and gelation properties were not caused by changes in intrinsic starch properties as a result of PHS. PHS had no influence on the SDS-extractability and molecular weight distribution of the proteins. For arabinoxylan, incipient breakdown was noticed, leading to a higher amount and average degree of polymerization of water extractable arabinoxylan. Results show that strategies to cope with severely PHS in wheat should focus on blocking enzyme activities.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Chiara Roye
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Liesbeth J Derde
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Georges Sinnaeve
- Département Valorisation des Productions, Centre Wallon de Recherches Agronomiques (CRA-W) , Chaussée de Namur 24, B-5030 Gembloux, Belgium
| | - Walter R Meza
- Unité de Phytotechnie des Régions Tempérées, Gembloux Agro-Bio Tech (G-ABT), Université de Liége , Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Bernard Bodson
- Unité de Phytotechnie des Régions Tempérées, Gembloux Agro-Bio Tech (G-ABT), Université de Liége , Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|