1
|
Du Q, Li H, Tu M, Wu Z, Zhang T, Liu J, Ding Y, Zeng X, Pan D. Legume protein fermented by lactic acid bacteria: Specific enzymatic hydrolysis, protein composition, structure, and functional properties. Colloids Surf B Biointerfaces 2024; 238:113929. [PMID: 38677155 DOI: 10.1016/j.colsurfb.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Hang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Liu Z, Fu Y, Azarpazhooh E, Ajami M, Li W, Rui X. Lactic acid bacteria modulate the gastrointestinal digestive behavior of soy glycinin and correlation with its immunoreactivity: a peptidomic study. Food Funct 2024; 15:2524-2535. [PMID: 38345089 DOI: 10.1039/d3fo04375d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Lactic acid bacterial fermentation helps reduce the immunoreactivity of soy protein. Nevertheless, the effect of lactic acid bacterial fermentation on a particular soy allergen and the consequent dynamic change of epitopes during gastrointestinal digestion are unclear. In this study, soy glycinin was isolated and an in vitro dynamic gastrointestinal model was established to investigate the dynamic change in the immunoreactivity and peptide profile of unfermented (UG) and fermented glycinin (FG) digestates. The results demonstrated that the FG intestinal digestate had a lower antigenicity (0.08%-0.12%) and IgE-binding capacity (1.49%-3.61%) towards glycinin at the early (I-5) and middle (I-30) stages of gastrointestinal digestion, especially those prepared at 2% (w/v) protein concentration. Peptidomic analysis showed that the glycinin subunits G1 and G2 were the preferred ones to release the most abundant peptides, whereas G2, G4, and G5 had an elevated epitope-cleavage rate in FG at stages I-5 and I-30. Three-dimensional modeling revealed that fermentation-induced differential degradation epitopes in gastrointestinal digestion were predominantly located in the α-helix and β-sheet structures. They were closely correlated with the reduced immunoreactivity of soy glycinin.
Collapse
Affiliation(s)
- Zhen Liu
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| | - Yumeng Fu
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| | - Elham Azarpazhooh
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Iran
| | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| |
Collapse
|
3
|
Wang Y, Sun W, Zhang Y, Li W, Zhang Q, Rui X. Assessment of dynamic digestion fate of soy protein gel induced by lactic acid bacteria: A protein digestomics research. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Ma Y, Zhou S, Lu J. Metabolomic Analysis Reveals Changes of Bioactive Compounds in Mung Beans (Vigna radiata) during γ-Aminobutyric Acid Enrichment Treatment. Foods 2022; 11:foods11101423. [PMID: 35626988 PMCID: PMC9141900 DOI: 10.3390/foods11101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
Soaking together with Heat and Relative Humidity (HRH) treatment has been applied successfully to enrich γ-aminobutyric acid (GABA) in mung beans. However, whether and how the above GABA enrichment processing influences the other bioactive molecules is elusive. In the present study, mung beans were soaked and then treated by HRH for 5 or 7 h. By using metabolomics techniques, the changes of 496 metabolites were determined. The relative content of flavonoids and phenolic acids increased during soaking but slightly decreased during HRH. Intriguingly, soaking and HRH had the opposite effects on the glycosylation of polyphenols. The relative content of glycosylated or un-glycosylated polyphenols increased during soaking or HRH, respectively. The relative content of α-ketoglutaric acid increased more than 20 times after 5 h HRH treatment. Bioactive molecules could be enriched during GABA enrichment processing. Depending on the desired bioactive compounds, soaking and different duration of HRH treatment could be selected.
Collapse
Affiliation(s)
- Yuling Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.M.); (S.Z.)
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.M.); (S.Z.)
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.M.); (S.Z.)
- Correspondence:
| |
Collapse
|
5
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zahir M, Fogliano V, Capuano E. Effect of soybean processing on cell wall porosity and protein digestibility. Food Funct 2020; 11:285-296. [PMID: 31825419 DOI: 10.1039/c9fo02167a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Apart from the presence of antinutritional factors, digestibility of soybean proteins is limited in intact cells by cell wall permeability to proteolitic enzymes. Food processing may modulate cell wall permeability and hence the accessibility of protease enzymes to intracellular proteins. In this study, soybeans were processed in various ways, e.g. cooking applied alone or with either germination or fermentation processes, and the modification in cell wall permeability was investigated using confocal microscopy to visualize the penetration of FITC-dextran probes into isolated cells/cell clusters. Diffusion of fluorescently labelled trypsin into cells and cell clusters was also monitored. Microscopy observations showed that fermentation and germination as well as proteolitic enzymes increase the permeability of boiled soybean cotyledon cells. The diffusion of trypsin into all the isolated cells was observed at an early stage of simulated in vitro digestion, whereas diffusion into cell clusters was delayed due to a bigger size and limited permeability of cell clusters. A modest, although significant, increase in protein digestibility was observed when boiling was combined with fermentation or germination likely due to pre-digestion of storage proteins and inactivation of trypsin inhibitors. This study highlights the positive role of fermentation and germination in improving protein digestibility in soybeans but overall suggests that cell wall permeability to trypsin plays a minor role in the extent of protein digestion of intact soybean cells.
Collapse
Affiliation(s)
- Mostafa Zahir
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands.
| | | | | |
Collapse
|
7
|
Thibeault J, Patrick J, Martin A, Ortiz-Perez B, Hill S, Zhang S, Xia K, Colón W. Sarkosyl: A milder detergent than SDS for identifying proteins with moderately high hyperstability using gel electrophoresis. Anal Biochem 2019; 571:21-24. [PMID: 30779907 DOI: 10.1016/j.ab.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Sodium dodecyl sulfate (SDS) is a detergent used as a strong denaturant of proteins in gel electrophoresis. It has previously been shown that certain hyperstable, also known as kinetically stable, proteins are resistant to SDS and thus require heating for their denaturation in the presence of SDS. Because of its high denaturing strength, relatively few proteins are resistant to SDS thereby limiting the current use of SDS-PAGE for identifying hyperstable degradation-resistant proteins. In this study, we show that sarkosyl, a milder detergent than SDS, is able to identify proteins with moderately high kinetic stability that lack SDS-resistance. Our assay involves running and subsequently comparing boiled and unheated protein samples containing sarkosyl, instead of SDS, on PAGE gels and identifying subsequent differences in protein migration. Our results also show that sarkosyl and SDS may be combined in PAGE experiments at varying relative percentages to obtain semi-quantitative information about a protein's kinetic stability in a range inaccessible by probing through native- or SDS-PAGE. Using protein extracts from various legumes as model systems, we detected proteins with a range of protein stability from nearly SDS-resistant to barely sarkosyl resistant.
Collapse
Affiliation(s)
- Jane Thibeault
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica Patrick
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alexi Martin
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Brian Ortiz-Perez
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shakeema Hill
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Songjie Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
8
|
Pasquevich MY, Dreon MS, Qiu JW, Mu H, Heras H. Convergent evolution of plant and animal embryo defences by hyperstable non-digestible storage proteins. Sci Rep 2017; 7:15848. [PMID: 29158565 PMCID: PMC5696525 DOI: 10.1038/s41598-017-16185-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability features affected its capacity to withstand passage through predator guts. The native protein withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to in vitro proteinase digestion and displays structural stability between pH 2.0-12.0 and 25-85 °C. Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of predators unaffected. The selective pressure of the harsh gastrointestinal environment would have favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable antinutritive proteins to unattended reproductive stages in animals.
Collapse
Affiliation(s)
- María Yanina Pasquevich
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET CCT-La Plata, La Plata, Argentina.,Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, Argentina
| | - Marcos Sebastián Dreon
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET CCT-La Plata, La Plata, Argentina.,Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, Argentina
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET CCT-La Plata, La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina.
| |
Collapse
|
9
|
Colón W, Church J, Sen J, Thibeault J, Trasatti H, Xia K. Biological Roles of Protein Kinetic Stability. Biochemistry 2017; 56:6179-6186. [PMID: 29087706 DOI: 10.1021/acs.biochem.7b00942] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A protein's stability may range from nonexistent, as in the case of intrinsically disordered proteins, to very high, as indicated by a protein's resistance to degradation, even under relatively harsh conditions. The stability of this latter group is usually under kinetic control because of a high activation energy for unfolding that virtually traps the protein in a specific conformation, thereby conferring resistance to proteolytic degradation and misfolding aggregation. The usual outcome of kinetic stability is a longer protein half-life. Thus, the protective role of protein kinetic stability is often appreciated, but relatively little is known about the extent of biological roles related to this property. In this Perspective, we will discuss several known or putative biological roles of protein kinetic stability, including protection from stressors to avoid aggregation or premature degradation, achieving long-term phenotypic change, and regulating cellular processes by controlling the trigger and timing of molecular motion. The picture that emerges from this analysis is that protein kinetic stability is involved in a myriad of known and yet to be discovered biological functions via its ability to confer degradation resistance and control the timing, extent, and permanency of molecular motion.
Collapse
Affiliation(s)
- Wilfredo Colón
- Department of Chemistry and Chemical Biology, ‡Center for Biotechnology and Interdisciplinary Studies, and §Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jennifer Church
- Department of Chemistry and Chemical Biology, ‡Center for Biotechnology and Interdisciplinary Studies, and §Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jayeeta Sen
- Department of Chemistry and Chemical Biology, ‡Center for Biotechnology and Interdisciplinary Studies, and §Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jane Thibeault
- Department of Chemistry and Chemical Biology, ‡Center for Biotechnology and Interdisciplinary Studies, and §Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hannah Trasatti
- Department of Chemistry and Chemical Biology, ‡Center for Biotechnology and Interdisciplinary Studies, and §Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology, ‡Center for Biotechnology and Interdisciplinary Studies, and §Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
10
|
Thibeault J, Church J, Ortiz-Perez B, Addo S, Hill S, Khalil A, Young M, Xia K, Colón W. Analyzing bean extracts using time-dependent SDS trapping to quantify the kinetic stability of phaseolin proteins. Biochem Biophys Res Commun 2017; 491:994-999. [DOI: 10.1016/j.bbrc.2017.07.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
11
|
Liu Y, Wu X, Hou W, Li P, Sha W, Tian Y. Structure and function of seed storage proteins in faba bean (Vicia faba L.). 3 Biotech 2017; 7:74. [PMID: 28452019 DOI: 10.1007/s13205-017-0691-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/10/2017] [Indexed: 02/07/2023] Open
Abstract
The protein subunit is the most important basic unit of protein, and its study can unravel the structure and function of seed storage proteins in faba bean. In this study, we identified six specific protein subunits in Faba bean (cv. Qinghai 13) combining liquid chromatography (LC), liquid chromatography-electronic spray ionization mass (LC-ESI-MS/MS) and bio-information technology. The results suggested a diversity of seed storage proteins in faba bean, and a total of 16 proteins (four GroEL molecular chaperones and 12 plant-specific proteins) were identified from 97-, 96-, 64-, 47-, 42-, and 38-kD-specific protein subunits in faba bean based on the peptide sequence. We also analyzed the composition and abundance of the amino acids, the physicochemical characteristics, secondary structure, three-dimensional structure, transmembrane domain, and possible subcellular localization of these identified proteins in faba bean seed, and finally predicted function and structure. The three-dimensional structures were generated based on homologous modeling, and the protein function was analyzed based on the annotation from the non-redundant protein database (NR database, NCBI) and function analysis of optimal modeling. The objective of this study was to identify the seed storage proteins in faba bean and confirm the structure and function of these proteins. Our results can be useful for the study of protein nutrition and achieve breeding goals for optimal protein quality in faba bean.
Collapse
Affiliation(s)
- Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China.
| | - Xuexia Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Wanwei Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Ping Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Weichao Sha
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Yingying Tian
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| |
Collapse
|