1
|
Corinthian Currants Supplementation Restores Serum Polar Phenolic Compounds, Reduces IL-1beta, and Exerts Beneficial Effects on Gut Microbiota in the Streptozotocin-Induced Type-1 Diabetic Rat. Metabolites 2023; 13:metabo13030415. [PMID: 36984855 PMCID: PMC10051135 DOI: 10.3390/metabo13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The present study aimed at investigating the possible benefits of a dietary intervention with Corinthian currants, a rich source of phenolic compounds, on type 1 diabetes (T1D) using the animal model of the streptozotocin-(STZ)-induced diabetic rat. Male Wistar rats were randomly assigned into four groups: control animals, which received a control diet (CD) or a diet supplemented with 10% w/w Corinthian currants (CCD), and diabetic animals, which received a control diet (DCD) or a currant diet (DCCD) for 4 weeks. Plasma biochemical parameters, insulin, polar phenolic compounds, and inflammatory factors were determined. Microbiota populations in tissue and intestinal fluid of the caecum, as well as fecal microbiota populations and short-chain fatty acids (SCFAs), were measured. Fecal microbiota was further analyzed by 16S rRNA sequencing. The results of the study showed that a Corinthian currant-supplemented diet restored serum polar phenolic compounds and decreased interleukin-1b (IL-1b) (p < 0.05) both in control and diabetic animals. Increased caecal lactobacilli counts (p < 0.05) and maintenance of enterococci levels within normal range were observed in the intestinal fluid of the DCCD group (p < 0.05 compared to DCD). Higher acetic acid levels were detected in the feces of diabetic rats that received the currant diet compared to the animals that received the control diet (p < 0.05). Corinthian currant could serve as a beneficial dietary component in the condition of T1D based on the results coming from the animal model of the STZ-induced T1D rat.
Collapse
|
2
|
Drake AM, Coughlan MT, Christophersen CT, Snelson M. Resistant Starch as a Dietary Intervention to Limit the Progression of Diabetic Kidney Disease. Nutrients 2022; 14:4547. [PMID: 36364808 PMCID: PMC9656781 DOI: 10.3390/nu14214547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
Diabetes is the leading cause of kidney disease, and as the number of individuals with diabetes increases there is a concomitant increase in the prevalence of diabetic kidney disease (DKD). Diabetes contributes to the development of DKD through a number of pathways, including inflammation, oxidative stress, and the gut-kidney axis, which may be amenable to dietary therapy. Resistant starch (RS) is a dietary fibre that alters the gut microbial consortium, leading to an increase in the microbial production of short chain fatty acids. Evidence from animal and human studies indicate that short chain fatty acids are able to attenuate inflammatory and oxidative stress pathways, which may mitigate the progression of DKD. In this review, we evaluate and summarise the evidence from both preclinical models of DKD and clinical trials that have utilised RS as a dietary therapy to limit the progression of DKD.
Collapse
Affiliation(s)
- Anna M. Drake
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Melinda T. Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
- Baker Heart & Diabetes Institute, Melbourne 3004, Australia
| | - Claus T. Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular Life Sciences, Curtin University, Bentley 6102, Australia
| | - Matthew Snelson
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| |
Collapse
|
3
|
Al Theyab A, Almutairi T, Al-Suwaidi AM, Bendriss G, McVeigh C, Chaari A. Epigenetic Effects of Gut Metabolites: Exploring the Path of Dietary Prevention of Type 1 Diabetes. Front Nutr 2020; 7:563605. [PMID: 33072796 PMCID: PMC7541812 DOI: 10.3389/fnut.2020.563605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) has increased over the past half century and has now become the second most frequent autoimmune disease in childhood and one of major public health concern worldwide. Evidence suggests that modern lifestyles and rapid environmental changes are driving factors that underlie this increase. The integration of these two factors brings about changes in food intake. This, in turn, alters epigenetic regulations of the genome and intestinal microbiota composition, which may ultimately play a role in pathogenesis of T1D. Recent evidence shows that dysbiosis of the gut microbiota is closely associated with T1D and that a dietary intervention can influence epigenetic changes associated with this disease and may modify gene expression patterns through epigenetic mechanisms. In this review focus on how a diet can shape the gut microbiome, its effect on the epigenome in T1D, and the future of T1D management by microbiome therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Doha, Qatar
| |
Collapse
|
4
|
Retamal I, Hernández R, Velarde V, Oyarzún A, Martínez C, Julieta González M, Martínez J, Smith PC. Diabetes alters the involvement of myofibroblasts during periodontal wound healing. Oral Dis 2020; 26:1062-1071. [DOI: 10.1111/odi.13325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ignacio Retamal
- Faculty of Dentistry Universidad de los Andes Santiago Chile
| | - Romina Hernández
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - Victoria Velarde
- Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| | | | - Constanza Martínez
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - María Julieta González
- Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
| | - Jorge Martínez
- Cell Biology Laboratory Institute of Nutrition and Food Technology Universidad de Chile Santiago Chile
| | - Patricio C. Smith
- School of Dentistry Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
5
|
Snelson M, Tan SM, Higgins GC, Lindblom RSJ, Coughlan MT. Exploring the role of the metabolite-sensing receptor GPR109a in diabetic nephropathy. Am J Physiol Renal Physiol 2020; 318:F835-F842. [PMID: 32068460 DOI: 10.1152/ajprenal.00505.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alterations in gut homeostasis may contribute to the progression of diabetic nephropathy. There has been recent attention on the renoprotective effects of metabolite-sensing receptors in chronic renal injury, including the G protein-coupled receptor (GPR)109a, which ligates the short-chain fatty acid butyrate. However, the role of GPR109a in the development of diabetic nephropathy, a milieu of diminished microbiome-derived metabolites, has not yet been determined. The present study aimed to assess the effects of insufficient GPR109a signaling, via genetic deletion of GPR109a, on the development of renal injury in diabetic nephropathy. Gpr109a-/- mice or their wild-type littermates (Gpr109a+/+) were rendered diabetic with streptozotocin. Mice received a control diet or an isocaloric high-fiber diet (12.5% resistant starch) for 24 wk, and gastrointestinal permeability and renal injury were determined. Diabetes was associated with increased albuminuria, glomerulosclerosis, and inflammation. In comparison, Gpr109a-/- mice with diabetes did not show an altered renal phenotype. Resistant starch supplementation did not afford protection from renal injury in diabetic nephropathy. While diabetes was associated with alterations in intestinal morphology, intestinal permeability assessed in vivo using the FITC-dextran test was unaltered. GPR109a deletion did not worsen gastrointestinal permeability. Furthermore, 12.5% resistant starch supplementation, at physiological concentrations, had no effect on intestinal permeability or morphology. The results of this study indicate that GPR109a does not play a critical role in intestinal homeostasis in a model of type 1 diabetes or in the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Gavin C Higgins
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Runa S J Lindblom
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms 2019; 7:microorganisms7030067. [PMID: 30832381 PMCID: PMC6463158 DOI: 10.3390/microorganisms7030067] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Type 1-diabetes (T1D) is an autoimmune disease characterized by immune-mediated destruction of pancreatic beta (β)-cells. Genetic and environmental interactions play an important role in immune system malfunction by priming an aggressive adaptive immune response against β-cells. The microbes inhabiting the human intestine closely interact with the enteric mucosal immune system. Gut microbiota colonization and immune system maturation occur in parallel during early years of life; hence, perturbations in the gut microbiota can impair the functions of immune cells and vice-versa. Abnormal gut microbiota perturbations (dysbiosis) are often detected in T1D subjects, particularly those diagnosed as multiple-autoantibody-positive as a result of an aggressive and adverse immunoresponse. The pathogenesis of T1D involves activation of self-reactive T-cells, resulting in the destruction of β-cells by CD8⁺ T-lymphocytes. It is also becoming clear that gut microbes interact closely with T-cells. The amelioration of gut dysbiosis using specific probiotics and prebiotics has been found to be associated with decline in the autoimmune response (with diminished inflammation) and gut integrity (through increased expression of tight-junction proteins in the intestinal epithelium). This review discusses the potential interactions between gut microbiota and immune mechanisms that are involved in the progression of T1D and contemplates the potential effects and prospects of gut microbiota modulators, including probiotic and prebiotic interventions, in the amelioration of T1D pathology, in both human and animal models.
Collapse
|
7
|
Snelson M, Kellow NJ, Coughlan MT. Modulation of the Gut Microbiota by Resistant Starch as a Treatment of Chronic Kidney Diseases: Evidence of Efficacy and Mechanistic Insights. Adv Nutr 2019; 10:303-320. [PMID: 30668615 PMCID: PMC6416045 DOI: 10.1093/advances/nmy068] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2018] [Accepted: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) has been associated with changes in gut microbial ecology, or "dysbiosis," which may contribute to disease progression. Recent studies have focused on dietary approaches to favorably alter the composition of the gut microbial communities as a treatment method in CKD. Resistant starch (RS), a prebiotic that promotes proliferation of gut bacteria such as Bifidobacteria and Lactobacilli, increases the production of metabolites including short-chain fatty acids, which confer a number of health-promoting benefits. However, there is a lack of mechanistic insight into how these metabolites can positively influence renal health. Emerging evidence shows that microbiota-derived metabolites can regulate the incretin axis and mitigate inflammation via expansion of regulatory T cells. Studies from animal models and patients with CKD show that RS supplementation attenuates the concentrations of uremic retention solutes, including indoxyl sulfate and p-cresyl sulfate. Here, we present the current state of knowledge linking the microbiome to CKD, we explore the efficacy of RS in animal models of CKD and in humans with the condition, and we discuss how RS supplementation could be a promising dietary approach for slowing CKD progression.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicole J Kellow
- Be Active Sleep & Eat (BASE) Facility, Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Heart Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Qin R, Yu J, Li Y, Copeland L, Wang S, Wang S. Structural Changes of Starch-Lipid Complexes during Postprocessing and Their Effect on In Vitro Enzymatic Digestibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1530-1536. [PMID: 30633506 DOI: 10.1021/acs.jafc.8b06371] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of cooking and storage on the structure and in vitro enzymatic digestibility of complexes formed between fatty acids and debranched high-amylose starch (DHA7-FA) were investigated for the first time. Cooking greatly decreased the crystallinities of DHA7-lauric acid (LA) and DHA7-myristic acid (MA) complexes but had little effect on the crystallinities of DHA7-palmitic acid (PA) and DHA7-stearic acid (SA) complexes. Cooking increased the enthalpy-change (Δ H) values and short-range molecular orders of DHA7-FA complexes. Cooking decreased the in vitro enzymatic digestibility of DHA7-FA complexes, with the extent of the effect decreasing with increasing fatty acid chain length. Holding the samples at 4 °C for 24 h after cooking did not greatly affect the long- and short-range molecular orders nor the in vitro enzymatic digestibility of DHA7-FA complexes. From this study, we conclude that cooking disrupted the long-range crystalline structures of DHA7-LA and DHA7-MA complexes but enhanced the short-range molecular orders of all of the DHA7-FA complexes. The latter effect accounted mainly for the reduced in vitro enzymatic digestibility of DHA7-FA complexes.
Collapse
Affiliation(s)
- Renbing Qin
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , Tianjin 300457 , China
- School of Food Engineering and Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Yufang Li
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , Tianjin 300457 , China
- School of Food Engineering and Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| | - Les Copeland
- Sydney Institute of Agriculture, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , Tianjin 300457 , China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , Tianjin 300457 , China
- School of Food Engineering and Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , China
| |
Collapse
|
9
|
Krishan P, Bedi O, Rani M. Impact of diet restriction in the management of diabetes: evidences from preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 391:235-245. [PMID: 29249036 DOI: 10.1007/s00210-017-1453-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
The inappropriate dietary habits lead to the onset of age-related pathologies which include diabetes and cardiovascular ailments. Dietary restriction and nutritional therapy play an important role in the prevention of these chronic ailments. Preclinical research provides a basis for the therapeutic exploration of new dietary interventions for the clinical trials to potentiate the scientific management of diabetes and its related complications which further help in translating these nutritional improvements from bench to bedside. Within the same context, numerous therapeutically proved preclinical dietary interventions like high-fiber diet, caloric restriction, soy isoflavone-containing diets, etc., have shown the promising results for the management of diabetes and the associated complications. The focus of the present review is to highlight the various preclinical evidences of diet restriction for the management of diabetes and which will be helpful for enlightening the new ideas of nutritional therapy for future research exploration. In addition, some potential approaches are also discussed which are associated with various nutritional interventions to combat progressive diabetes and the associated disorders. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| | - Onkar Bedi
- JRF, DST-SERB, New Delhi, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Monika Rani
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
10
|
Ferrario C, Statello R, Carnevali L, Mancabelli L, Milani C, Mangifesta M, Duranti S, Lugli GA, Jimenez B, Lodge S, Viappiani A, Alessandri G, Dall'Asta M, Del Rio D, Sgoifo A, van Sinderen D, Ventura M, Turroni F. How to Feed the Mammalian Gut Microbiota: Bacterial and Metabolic Modulation by Dietary Fibers. Front Microbiol 2017; 8:1749. [PMID: 28955319 PMCID: PMC5600934 DOI: 10.3389/fmicb.2017.01749] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
The composition of the gut microbiota of mammals is greatly influenced by diet. Therefore, evaluation of different food ingredients that may promote changes in the gut microbiota composition is an attractive approach to treat microbiota disturbances. In this study, three dietary fibers, such as inulin (I, 10%), resistant starch (RS, 10%), and citrus pectin (3%), were employed as supplements to normal chow diet of adult male rats for 2 weeks. Fecal microbiota composition and corresponding metabolite profiles were assessed before and after prebiotics supplementation. A general increase in the Bacteroidetes phylum was detected with a concurrent reduction in Firmicutes, in particular for I and RS experiments, while additional changes in the microbiota composition were evident at lower taxonomic levels for all the three substrates. Such modifications in the microbiota composition were correlated with changes in metabolic profiles of animals, in particular changes in acetate and succinate levels. This study represents a first attempt to modulate selectively the abundance and/or metabolic activity of various members of the gut microbiota by means of dietary fiber.
Collapse
Affiliation(s)
- Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Rosario Statello
- Stress Physiology Laboratory, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Luca Carnevali
- Stress Physiology Laboratory, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | | | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Beatriz Jimenez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College LondonLondon, United Kingdom
| | - Samantha Lodge
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College LondonLondon, United Kingdom
| | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | | | - Daniele Del Rio
- Department of Food and Drug, University of ParmaParma, Italy
| | - Andrea Sgoifo
- Stress Physiology Laboratory, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of IrelandCork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of ParmaParma, Italy
| |
Collapse
|
11
|
Saande CJ, Jones SK, Hahn KE, Reed CH, Rowling MJ, Schalinske KL. Dietary Whole Egg Consumption Attenuates Body Weight Gain and Is More Effective than Supplemental Cholecalciferol in Maintaining Vitamin D Balance in Type 2 Diabetic Rats. J Nutr 2017; 147:1715-1721. [PMID: 28794211 DOI: 10.3945/jn.117.254193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/07/2017] [Accepted: 07/10/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Type 2 diabetes (T2D) is characterized by vitamin D insufficiency owing to excessive urinary loss of 25-hydroxycholecalciferol [25(OH)D]. We previously reported that a diet containing dried whole egg, a rich source of vitamin D, was effective at maintaining circulating 25(OH)D concentrations in rats with T2D. Furthermore, whole egg consumption reduced body weight gain in rats with T2D.Objective: This study was conducted to compare whole egg consumption with supplemental cholecalciferol with respect to vitamin D balance, weight gain, and body composition in rats with T2D.Methods: Male Zucker diabetic fatty (ZDF) rats (n = 24) and their lean controls (n = 24) were obtained at 5 wk of age and randomly assigned to 3 treatment groups: a casein-based diet (CAS), a dried whole egg-based diet (WE), or a casein-based diet containing supplemental cholecalciferol (CAS+D) at the same amount of cholecalciferol provided by WE (37.6 μg/kg diet). Rats were fed their respective diets for 8 wk. Weight gain and food intake were measured daily, circulating 25(OH)D concentrations were measured by ELISA, and body composition was analyzed by dual X-ray absorptiometry.Results: Weight gain and percentage of body fat were reduced by ∼20% and 11%, respectively, in ZDF rats fed WE compared with ZDF rats fed CAS or CAS+D. ZDF rats fed CAS had 21% lower serum 25(OH)D concentrations than lean rats fed CAS. In ZDF rats, WE consumption increased serum 25(OH)D concentrations 130% compared with CAS, whereas consumption of CAS+D increased serum 25(OH)D concentrations 35% compared with CAS.Conclusions: Our data suggest that dietary consumption of whole eggs is more effective than supplemental cholecalciferol in maintaining circulating 25(OH)D concentrations in rats with T2D. Moreover, whole egg consumption attenuated weight gain and reduced percentage of body fat in ZDF rats. These data may support new dietary recommendations targeting the prevention of vitamin D insufficiency in T2D.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition and.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Samantha K Jones
- Department of Food Science and Human Nutrition and.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | | | | | - Matthew J Rowling
- Department of Food Science and Human Nutrition and.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition and .,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| |
Collapse
|
12
|
Koh GY, Rowling MJ. Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus. Nutr Rev 2017; 75:350-360. [DOI: 10.1093/nutrit/nux006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|