1
|
Yang C, Ning X, Wang B, Tian T, Chen Y, Ma L, Wang L. Association between spectrum of mycotoxins and semen quality: A cross-sectional study in Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135124. [PMID: 38981237 DOI: 10.1016/j.jhazmat.2024.135124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Exposure to mycotoxins is unavoidable in daily life through ingestion, dermal, and inhalation routes. Toxicological studies found that exposure to mycotoxins might affect male reproductive function. However, there is still a lack of population evidence. We aimed to assess the association of individual and joint exposure to spectrum of mycotoxins with semen quality. The present study included 192 participants in Beijing, China. We measured conventional semen parameters and assessed semen quality. Sixty-seven traditional or emerging mycotoxins were determined to describe the spectrum of mycotoxins. The participants were widely exposed to multiple mycotoxins, and nearly half were simultaneously exposed to more than six mycotoxins. After adjusting potential confounders, logistic regression indicated that the number and concentration of plasma mycotoxin were correlated to the risk of low semen quality. Plasma beauvericin and citrinin concentrations were associated with lower semen quality. The least absolute shrinkage and selection operator regression showed similar results to logistic regression. Quantile-based g-computation and Bayesian kernel machine regression models found that the mixture of mycotoxins was harmful to semen quality, especially in sperm motility. In conclusion, both individual and mixture of mycotoxin exposure were correlated with lower semen quality. More regulations and measures should be taken to reduce mycotoxin contamination.
Collapse
Affiliation(s)
- Chen Yang
- Institute of Reproductive and Child Health/National Health Commission, Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Xiao Ning
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China
| | - Baojun Wang
- Department of Urology Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yongyan Chen
- Institute of Reproductive and Child Health/National Health Commission, Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Le Ma
- Department of Urology Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China.
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission, Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Protective Effect of SeMet on Liver Injury Induced by Ochratoxin A in Rabbits. Toxins (Basel) 2022; 14:toxins14090628. [PMID: 36136566 PMCID: PMC9504919 DOI: 10.3390/toxins14090628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is second only to aflatoxin in toxicity among mycotoxins. Recent studies have shown that selenomethionine (SeMet) has a protective effect on mycotoxin-induced toxicity. The purpose of this study was to investigate the protective effect and mechanism of SeMet on OTA-induced liver injury in rabbits. Sixty 35-day-old rabbits with similar body weight were randomly divided into five groups: control group, OTA group (0.2 mg/kg OTA), OTA + 0.2 mg/kg SeMet group, OTA + 0.4 mg/kg SeMet group and OTA + 0.6 mg/kg SeMet group. Rabbits were fed different doses of the SeMet diet for 21 d, and OTA was administered for one week from day 15 (the control group was provided the same dose of NaHCO3 solution). The results showed that 0.4 mg/kg SeMet could significantly improve the liver injury induced by OTA poisoning. SeMet supplementation can improve the changes in physiological blood indexes caused by OTA poisoning in rabbits and alleviate pathological damage to the rabbit liver. SeMet also increased the activities of SOD, GSH-Px and T-AOC and significantly decreased the contents of ROS, MDA, IL-1β, IL-6 and TNF-α, effectively alleviating the oxidative stress and inflammatory response caused by OTA poisoning. In addition, OTA poisoning inhibits Nrf2 and HO-1 levels, ultimately leading to peroxide reaction, while SeMet activates the Nrf2 signaling pathway and enhances the expression of the HO-1 downstream Nrf2 gene. These results suggest that Se protects the liver from OTA-induced hepatotoxicity by regulating Nrf2/HO-1 expression.
Collapse
|
4
|
Sarkar A, Nazir A. Carrying Excess Baggage Can Slowdown Life: Protein Clearance Machineries That Go Awry During Aging and the Relevance of Maintaining Them. Mol Neurobiol 2021; 59:821-840. [PMID: 34792731 DOI: 10.1007/s12035-021-02640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Cellular homeostasis is maintained by rapid and systematic cleansing of aberrant and aggregated proteins within cells. Neurodegenerative diseases (NDs) especially Parkinson's and Alzheimer's disease are known to be associated with multiple factors, most important being impaired clearance of aggregates, resulting in the accumulation of specific aggregated protein in the brain. Protein quality control (PQC) of proteostasis network comprises proteolytic machineries and chaperones along with their regulators to ensure precise operation and maintenance of proteostasis. Such regulatory factors coordinate among each other multiple functional aspects related to proteins, including their synthesis, folding, transport, and degradation. During aging due to inevitable endogenous and external stresses, sustaining a proteome balance is a challenging task. Such stresses decline the capacity of the proteostasis network compromising the proteome integrity, affecting the fundamental physiological processes including reproductive fitness of the organism. This review focuses on highlighting proteome-wide changes during aging and the strategies for proteostasis improvements. The possibility of augmenting the proteostasis network either via genetic or pharmacological interventions may be a promising strategy towards delaying age-associated pathological consequences due to proteome disbalance, thus promoting healthy aging and prolonged longevity.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
5
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
6
|
Tong C, Li P, Yu LH, Li L, Li K, Chen Y, Yang SH, Long M. Selenium-rich yeast attenuates ochratoxin A-induced small intestinal injury in broiler chickens by activating the Nrf2 pathway and inhibiting NF-KB activation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
7
|
Deore PS, Gray MD, Chung AJ, Manderville RA. Ligand-Induced G-Quadruplex Polymorphism: A DNA Nanodevice for Label-Free Aptasensor Platforms. J Am Chem Soc 2019; 141:14288-14297. [PMID: 31436972 DOI: 10.1021/jacs.9b06533] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G-Quadruplexes (GQs) serve as popular recognition elements for DNA aptasensors and are incorporated into a DNA nanodevice capable of controlled conformational changes to activate a sensing mechanism. Herein we highlight the utility of a GQ-GQ nanodevice fueled by GQ-specific ligands as a label-free aptasensor detection strategy. The concept was first illustrated utilizing the prototypical polymorphic human telomeric repeat sequence (H-Telo22, d[AG3(T2AG3)3]) that can undergo ligand-induced topology changes between antiparallel, parallel, or hybrid GQ structures. The H-Telo22-ligand interactions served as a model of the GQ-GQ nanodevice. The utility of the device in a real aptasensor platform was then highlighted utilizing the ochratoxin A (OTA) binding aptamer (OTABA) that folds into an antiparallel GQ in the absence and presence of target OTA. Three cationic fluorogenic ligands served as GQ-specific light-up probes and as potential fuel for the GQ-GQ nanodevice by producing an inactive GQ topology (parallel or hybrid) of OTABA. Our findings demonstrate efficient OTA-mediated dye displacement with excellent emission sensitivity for OTA detection when the fluorogenic dyes induce a topology change in OTABA (parallel or hybrid). However, when the fluorogenic dye fails to induce a conformational change in the antiparallel fold of OTABA, subsequent additions of OTA to the aptamer-dye complex results in poor dye displacement with weak emission response for OTA detection. These results are the first to exemplify a ligand-induced GQ-GQ nanodevice as an aptasensor mechanism and demonstrate diagnostic applications for topology-specific GQ binders.
Collapse
Affiliation(s)
- Prashant S Deore
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Micaela D Gray
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Andrew J Chung
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
8
|
Hafycz JM, Naidoo NN. Sleep, Aging, and Cellular Health: Aged-Related Changes in Sleep and Protein Homeostasis Converge in Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:140. [PMID: 31244649 PMCID: PMC6579877 DOI: 10.3389/fnagi.2019.00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023] Open
Abstract
Many neurodegenerative diseases manifest in an overall aged population, the pathology of which is hallmarked by abnormal protein aggregation. It is known that across aging, sleep quality becomes less efficient and protein homeostatic regulatory mechanisms deteriorate. There is a known relationship between extended wakefulness and poorly consolidated sleep and an increase in cellular stress. In an aged population, when sleep is chronically poor, and proteostatic regulatory mechanisms are less efficient, the cell is inundated with misfolded proteins and suffers a collapse in homeostasis. In this review article, we explore the interplay between aging, sleep quality, and proteostasis and how these processes are implicated in the development and progression of neurodegenerative diseases like Alzheimer's disease (AD). We also present data suggesting that reducing cellular stress and improving proteostasis and sleep quality could serve as potential therapeutic solutions for the prevention or delay in the progression of these diseases.
Collapse
Affiliation(s)
- Jennifer M Hafycz
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, United States
| | - Nirinjini N Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, United States
| |
Collapse
|
9
|
Berger FD, Manderville RA, Sturla SJ. Adduct Fluorescence as a Tool to Decipher Sequence Impact on Frameshift Mutations Mediated by a C-Linked C8-Biphenyl-Guanine Lesion. Chem Res Toxicol 2019; 32:784-791. [PMID: 30785283 DOI: 10.1021/acs.chemrestox.9b00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic chemicals can undergo metabolic activation to afford electrophilic species that react at the C8-site of 2'-deoxyguanosine (dG) to generate bulky C8-dG adducts as a basis of initiating carcinogenesis. These DNA lesions have served as models to understand the mechanism of frameshift mutagenesis, especially within CG-dinucleotide repeat sequences, such as NarI (5'-GGCXCC-3', where X = C8-dG adduct), however there is still limited capacity to predict the likelihood of mutation arising within particular contexts, and hence chemistry-based strategies are needed for probing relationships between nucleic acid sequence and structure with replication errors. In the NarI sequence, certain C8-dG adducts may trigger in the course of DNA synthesis the formation of a slipped mutagenic intermediate (SMI) that contains a two nucleotide (XC) bulge in the template strand that can form upstream of the polymerase active site. This distortion facilitates polymerization but affords a GC dinucleotide deletion product (-2 frameshift mutation). In the current study, incorporating the fluorescent C-linked 4-fluorobiphenyl-dG (FBP-dG) adduct into two 22-mer templates containing CG-dinucleotide repeats ( NarI: 3'-CXCGGC-5' and CG3: 3'-CXCGCG-5', X = FBP-dG) and performing primer extension reactions using DNA polymerase I, Klenow fragment exo- (Kf-) revealed a dramatic sequence-based difference in polymerase bypass efficiency. Primer extension past FBP-dG within the NarI sequence was strongly blocked, whereas Kf- extended the primer past FBP-dG within a CG3 template to afford a full-length product and the GC dinucleotide deletion. To model the nucleotide insertion steps in the fully paired (FP) versus the slipped mutagenic (SM) translesion pathways, adducted template:primer duplexes were constructed and characterized by UV thermal denaturation and fluorescence spectroscopy. The emission intensity of the FBP-dG lesion exhibits sensitivity to SMI formation (turn-on) versus a FP duplex (turn-off), permitting insight into adduct base-pairing within the template:primer duplexes. This fluorescence sensitivity provides a rationale for sequence impact on -2 frameshift mutations mediated by the C-linked FBP-dG lesion.
Collapse
Affiliation(s)
- Florence D Berger
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| | - Richard A Manderville
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Shana J Sturla
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
10
|
Gan F, Zhou X, Zhou Y, Hou L, Chen X, Pan C, Huang K. Nephrotoxicity instead of immunotoxicity of OTA is induced through DNMT1-dependent activation of JAK2/STAT3 signaling pathway by targeting SOCS3. Arch Toxicol 2019; 93:1067-1082. [PMID: 30923867 DOI: 10.1007/s00204-019-02434-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity and immunotoxicity in animals and humans. However, the underlying mechanism and the effects of OTA on DNA damage have not been reported until now. The present study aims to investigate OTA-induced cytotoxicity and DNA damage and the underlying mechanism in PK15 cells and PAMs. The results showed that OTA at 2.0-8.0 µg/mL for 24 h induced cytotoxicity and DNA damage in PK15 cells and PAMs as demonstrated by decreasing cell viabilities and mRNA levels of DNA repair genes (OGG1, NEIL1 and NEIL3), increasing LDH release, Annexin V staining cells, apoptotic nuclei and the accumulation of γ-H2AX foci. OTA at 2.0-8.0 µg/mL increased DNMT1 and SOCS3 mRNA expressions about 2-4 fold in PK15 cells or 1.3-2 fold in PAMs. OTA at 2.0-8.0 µg/mL increased DNMT1, SOCS3, JAK2 and STAT3 protein expressions in PK15 cells or PAMs. DNMT inhibitor (5-Aza-2-dc), promoted SOCS3 expression, inhibited JAK2 and STAT3 expression, alleviated cytotoxicity, apoptosis and DNA damage induced by OTA at 4.0 µg/mL in PK15 cells. While, in PAMs, 5-Aza-2-dc had no effects on SOCS3 expression induced by OTA at 4.0 µg/mL, but inhibited JAK2 and STAT3 expression, and alleviated cytotoxicity, apoptosis and DNA damage induced by OTA. JAK inhibitor (AG490) or STAT3-siRNA alleviated OTA-induced cytotoxicity and DNA damage in PK15 cells or PAMs. Taken together, nephrotoxicity instead of immunotoxicity of OTA is induced by targeting SOCS3 through DNMT1-mediated JAK2/STAT3 signaling pathway. These results provide a scientific and new explanation of the underlying mechanism of OTA-induced nephrotoxicity and immunotoxicity.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xuan Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
11
|
Hu H, Jia X, Wang Y, Liang Z. Removal of ochratoxin A by a carboxypeptidase and peptides present in liquid cultures of Bacillus subtilis CW14. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ochratoxin A (OTA) is an important mycotoxin that contaminates a variety of agricultural products. The cell-free supernatant of Bacillus subtilis CW14 liquid cultures were reported previously to be capable of removing OTA efficiently. In this work, we examined several substances that are probably involved in this removal of OTA using in vitro experiments. The strain CW14 culture supernatant that was separated by ultrafiltration showed that the fractions collected at >10 kDa and <3 kDa had a significant ability to reduce OTA (84.9 and 74.8%, respectively) when incubated with 6 μg/ml OTA at 37 °C for 24 h. A putative metalloenzyme was responsible for the activity of the >10-kDa fraction, which was confirmed by the detrimental effects of heat treatments or addition of SDS, proteinase K, or EDTA. Subsequently, a carboxypeptidase (CP) gene that was likely related to the enzymatic conversion of OTA by the >10-kDa fraction was cloned from the B. subtilis CW14 genome, and over-expressed in Escherichia coli. The recombinant CP degraded 71.3% of OTA at 37 °C for 24 h, and ochratoxin α (OTα) was confirmed as a degradation product. From the <3-kDa fraction, some small peptides (1.7 kDa >Mw >0.7 kDa) were purified and decreased OTA by 45.0% under the same conditions, but no product was detected. These peptides were presumed to be capable of binding OTA due to their affinity with the OTA molecule, and the OTA-peptide complexes escaped from the extraction procedures for OTA quantification. These results indicated there was a probable synergistic effect that was involved in removal of OTA by the strain CW14 culture supernatant, which included enzymatic degradation by a CP and physical adsorption by some small peptides.
Collapse
Affiliation(s)
- H.N. Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China P.R
| | - X. Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China P.R
| | - Y.P. Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China P.R
| | - Z.H. Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China P.R
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China P.R
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, 100083, China P.R
| |
Collapse
|
12
|
Kathuria P, Sharma P, Manderville RA, Wetmore SD. Molecular Dynamics Simulations of Mismatched DNA Duplexes Associated with the Major C8-Linked 2′-Deoxyguanosine Adduct of the Food Mutagen Ochratoxin A: Influence of Opposing Base, Adduct Ionization State, and Sequence on the Structure of Damaged DNA. Chem Res Toxicol 2018; 31:712-720. [DOI: 10.1021/acs.chemrestox.8b00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Richard A. Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
13
|
Berger FD, Sturla SJ, Kung RW, Montina T, Wetmore SD, Manderville RA. Conformational Preference and Fluorescence Response of a C-Linked C8-Biphenyl-Guanine Lesion in the NarI Mutational Hotspot: Evidence for Enhanced Syn Adduct Formation. Chem Res Toxicol 2017; 31:37-47. [DOI: 10.1021/acs.chemrestox.7b00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Florence D. Berger
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Ryan W. Kung
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Tony Montina
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|