1
|
Pandey K, Dasgupta CN. Role of nanobionics to improve the photosynthetic productivity in plants and algae: an emerging approach. 3 Biotech 2025; 15:74. [PMID: 40060293 PMCID: PMC11885746 DOI: 10.1007/s13205-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
The domain of nanobionics has gained attention since its inception due to its potential applicability in plant, microalgal treatments, productivity enhancement. This review compares the intake and mobilization of nanoparticles (NPs) in plant and algal cell. In plants, NPs enter from root or other openings, and then carried by apoplastic or symplastic transport and accumulated in various parts, whereas in algae, NPs enter via endocytosis, passive transmission pathways, traverse the algal cell cytoplasm. This study demonstrated the mechanisms of metal-based NPs such as zinc (Zn), silver (Ag), iron (Fe), copper (Cu), titanium (Ti), and silica (Si) for seed priming or plant treatments to improve productivity. These metal NPs are used as nano-fertilizer for plant growths. It has also been observed that these NPs can reduce pathogenic infection and help to cope up with environmental stresses including heavy metals contamination such as arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Overall, the photosynthetic productivity increases through NPs as it increases ability to enhance light capture, improve electron transport, and optimize carbon fixation pathways and withstand stresses. These advancements not only elevate biomass production in plant improving agricultural output but also support the sustainable generation of biofuels and bioproducts from algae.
Collapse
Affiliation(s)
- Komal Pandey
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| | - Chitralekha Nag Dasgupta
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| |
Collapse
|
2
|
Chen L, Zhu L, Cheng H, Xu W, Li G, Zhang Y, Gu J, Chen L, Xie Z, Li Z, Wu H. Negatively Charged Carbon Dots Employed Symplastic and Apoplastic Pathways to Enable Better Plant Delivery than Positively Charged Carbon Dots. ACS NANO 2024; 18:23154-23167. [PMID: 39140713 DOI: 10.1021/acsnano.4c05362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Efficient delivery of nanoparticles (NPs) to plants is important for agricultural application. However, to date, we still lack knowledge about how NPs' charge matters for its translocation pathway, i.e., symplastic and apoplastic pathways, in plants. In this study, we synthesized and used negatively charged citrate sourced carbon dots (C-CDs, -37.97 ± 1.89 mV), Cy5 coated C-CDs (Cy5-C-CDs, -41.90 ± 2.55 mV), positively charged PEI coated carbon dots (P-CDs, +43.03 ± 1.71 mV), and Cy5 coated P-CDs (Cy5-P-CDs, +48.80 ± 1.21 mV) to investigate the role of surface charges and coatings on the employed translocation pathways (symplastic and apoplastic pathways) of charged NPs in plants. Our results showed that, different from the higher fluorescence intensity of P-CDs and Cy5-P-CDs in extracellular than intracellular space, the fluorescence intensity of C-CDs and Cy5-C-CDs was similar between intracellular and extracellular space in cucumber and cotton roots. It suggests that the negatively charged CDs were translocated via both symplastic and apoplastic pathways, but the positively charged CDs were mainly translocated via the apoplastic pathway. Furthermore, our results showed that root applied negatively charged C-CDs demonstrated higher leaf fluorescence than did positively charged P-CDs in both cucumber (8.09 ± 0.99 vs 3.75 ± 0.23) and cotton (7.27 ± 1.06 vs 3.23 ± 0.22), indicating that negatively charged CDs have a higher translocation efficiency from root to leaf than do positively charged CDs. It should be noted that CDs do not affect root cell activities, ROS level, and photosynthetic performance in cucumber and cotton, showing its good biocompatibility. Overall, this study not only figured out that root applied negatively charged CDs employed both symplastic and apoplastic pathways to do the transportation in roots compared with mainly the employment of apoplastic pathway for positively charge CDs, but also found that negatively charge CDs could be more efficiently translocated from root to leaf than positively charged CDs, indicating that imparting negative charge to NPs, at least CDs, matters for its efficient delivery in crops.
Collapse
Affiliation(s)
- Linlin Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lan Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiling Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenying Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangjiang Gu
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhouli Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
3
|
Ahmad S, Ahmad N, Islam MS, Ahmad MA, Ercisli S, Ullah R, Bari A, Munir I. Rice seeds biofortification using biogenic ıron oxide nanoparticles synthesized by using Glycyrrhiza glabra: a study on growth and yield ımprovement. Sci Rep 2024; 14:12368. [PMID: 38811671 PMCID: PMC11137158 DOI: 10.1038/s41598-024-62907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.
Collapse
Affiliation(s)
- Sidra Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Nayab Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
4
|
Xu M, Zhang Q, Lin X, Shang Y, Cui X, Guo L, Huang Y, Wu M, Song K. Potential Effects of Metal Oxides on Agricultural Production of Rice: A Mini Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:778. [PMID: 36840126 PMCID: PMC9966375 DOI: 10.3390/plants12040778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The extensive usage of metal oxide nanoparticles has aided in the spread and accumulation of these nanoparticles in the environment, potentially endangering both human health and the agroecological system. This research describes in detail the hazardous and advantageous impacts of common metal oxide nanomaterials, such as iron oxide, copper oxide, and zinc oxide, on the life cycle of rice. In-depth analyses are conducted on the transport patterns of nanoparticles in rice, the plant's reaction to stress, the reduction of heavy metal stress, and the improvement of rice quality by metal oxide nanoparticles, all of which are of significant interest in this subject. It is emphasized that from the perspective of advancing the field of nanoagriculture, the next stage of research should focus more on the molecular mechanisms of the effects of metal oxide nanoparticles on rice and the effects of combined use with other biological media. The limitations of the lack of existing studies on the effects of metal oxide nanomaterials on the entire life cycle of rice have been clearly pointed out.
Collapse
Affiliation(s)
- Miao Xu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Qi Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiuyun Lin
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Yuqing Shang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiyan Cui
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Liquan Guo
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yuanrui Huang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Ming Wu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
5
|
Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, Singh RK, Li DM, Arora J, Minkina T, Li YR. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. FRONTIERS IN PLANT SCIENCE 2022; 13:865048. [PMID: 35677230 PMCID: PMC9168910 DOI: 10.3389/fpls.2022.865048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Conventional fertilizers and pesticides are not sustainable for multiple reasons, including high delivery and usage inefficiency, considerable energy, and water inputs with adverse impact on the agroecosystem. Achieving and maintaining optimal food security is a global task that initiates agricultural approaches to be revolutionized effectively on time, as adversities in climate change, population growth, and loss of arable land may increase. Recent approaches based on nanotechnology may improve in vivo nutrient delivery to ensure the distribution of nutrients precisely, as nanoengineered particles may improve crop growth and productivity. The underlying mechanistic processes are yet to be unlayered because in coming years, the major task may be to develop novel and efficient nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield with ecological biodiversity, sustainable agricultural production, and agricultural socio-economy. This study highlights the potential of nanofertilizers in agricultural crops for improved plant performance productivity in case subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
6
|
Malik R, Saxena R, Warkar SG. Biopolymer‐Based Biomatrices – Organic Strategies to Combat Micronutrient Deficit for Dynamic Agronomy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ritu Malik
- Department of Applied Chemistry Delhi Technological University Delhi 110042 India E-mail: Address
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110007 India E-mail: Address
| | - Sudhir G. Warkar
- Department of Applied Chemistry Delhi Technological University Delhi 110042 India E-mail: Address
| |
Collapse
|
7
|
Huang G, Ding C, Guo N, Ding M, Zhang H, Kamran M, Zhou Z, Zhang T, Wang X. Polymer-coated manganese fertilizer and its combination with lime reduces cadmium accumulation in brown rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125597. [PMID: 33721775 DOI: 10.1016/j.jhazmat.2021.125597] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 05/28/2023]
Abstract
Manganese (Mn) has the potential to reduce cadmium (Cd) uptake by rice; however, the efficiency depends on its soil availability. Therefore, this study designed a slow-release Mn fertilizer by employing a polyacrylate coating. Pot trials were conducted to study the effects of coated-Mn and uncoated-Mn alone or in combination with lime on the dynamics of soil dissolved-Mn and available Cd, and the transportation of Mn and Cd within rice. The results showed that coated-Mn declined the release of Mn until the 7th day of application; however, it consistently supplied more dissolved-Mn than uncoated-Mn. As a result, coated-Mn induced a greater Cd reduction (45.8%) in brown rice than uncoated-Mn (9.7%). The total Cd of rice and its proportion in brown rice were greatly reduced by coated-Mn, indicating the inhibition of root uptake and interior transport of Cd. Additionally, lime addition prominently increased the soil pH and decreased the CaCl2-extractable Cd (90.1-93.9%). However, since lime reduced the soil dissolved-Mn, downregulated the OsHMA3 expression and upregulated the OsNramp5 expression, brown rice Cd was reduced by only 43.0%. The combined addition of lime and coated-Mn alleviated the liming effect on soil Mn and gene expression in roots, thereby reducing brown rice Cd by 71.5%.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naijia Guo
- Agricultural Ecology and Resource Protection Agency of Jiangxi Province, Nanchang 330046, China
| | - Mingjun Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Hua Zhang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Banerjee A, Roychoudhury A. Maghemite nano-fertilization promotes fluoride tolerance in rice by restoring grain yield and modulating the ionome and physiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112055. [PMID: 33765592 DOI: 10.1016/j.ecoenv.2021.112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The present manuscript elucidated the ameliorative potential of nano-maghemite (FeNPs) against the hazardous effects of fluoride toxicity in the sensitive rice cultivar, IR-64. Fluoride pollution triggered bioaccumulation in root, shoot and spikelets which inhibited reproduction, agronomic development and mineral uptake. Suppressed activity of enzymatic antioxidants and excessive cobalt translocation manifested severe ROS-induced oxidative injuries. Seedling priming with FeNPs reduced fluoride bioaccumulation and promoted efficient uptake of macroelements and micronutrients like potassium, calcium, iron, zinc, copper, nickel, manganese, selenium and vanadium and reduced the translocation of cobalt in mature seedlings during stress. This altogether triggered growth and activated the enzymes like SOD, CAT, APX and GPOX. High accumulation of non-enzymatic antioxidants like proline, anthocyanins, flavonoids, phenolics along with stimulated GSH synthesis (determined from high GR, GST and GPX activity) and glyoxalase activity enabled FeNP-pulsed plants to efficiently scavenge ROS, O2-, H2O2 and methylglyoxal, and mitigate oxidative injuries. The ROS production was also lowered due to suppressed NADPH oxidase activity. This ensured subsequent revitalization of Hill activity and the level of photosynthetic pigments. Due to reduced fluoride partitioning and improved nutritional sink, the grain and panicle development in FeNP-primed, stressed seedlings were more stimulated than even control sets. Overall, our findings supported by statistical modelling established the potential of iron-nanotechnology in promoting safe rice cultivation even in fluoride-polluted environments.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India.
| |
Collapse
|
9
|
Guha T, Gopal G, Chatterjee R, Mukherjee A, Kundu R. Differential growth and metabolic responses induced by nano-scale zero valent iron in germinating seeds and seedlings of Oryza sativa L. cv. Swarna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111104. [PMID: 32791360 DOI: 10.1016/j.ecoenv.2020.111104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Since development of antioxidant defence system is high energy demanding event, innate defence system and stress tolerance of plant is strictly governed by plant age. This study is aimed towards evaluating variation of tolerance in germinating seeds and seedlings of Oryza sativa L. cv. Swarna against nano-scale zero valent iron (nZVI). A comparative study of several physiological and biochemical parameters have been carried out among 2 distinct plant groups, Group I treated with variable concentrations of nZVI (50, 100, 150 and 200 mg L-1) during germination and Group II treated with similar nZVI doses on 7th day after germination. Upon treatment with higher nZVI concentrations, Group I seedlings showed susceptibility towards oxidative stress while Group II seedlings showed tolerance against these higher doses of nZVI. Significant growth enhancement was observed upon treatment with 50-150 mg L-1 nZVI, since up-regulation of plant's endogenous antioxidant system protected relatively aged Group II seedlings from oxidative damages. Hierarchical clustering based on overall physiological, biochemical and stress parameters confirmed that in Group I seedlings 100-200 mg L-1 nZVI treatments were toxic where as in Group II seedlings 50-150 mg L-1 nZVI treatments showed growth promoting effects. This differential response is due to developmental stage related resistance in plants.
Collapse
Affiliation(s)
- Titir Guha
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Rohan Chatterjee
- St. Xavier's College, 30 Mother Teresa Sarani, Kolkata, 16, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Rita Kundu
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India.
| |
Collapse
|
10
|
Guha T, Gopal G, Kundu R, Mukherjee A. Nanocomposites for Delivering Agrochemicals: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3691-3702. [PMID: 32129992 DOI: 10.1021/acs.jafc.9b06982] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Excessive application of fertilizers negatively affects soil health, causes low nutrient utilization efficiency in plants, and leads to environmental pollution. The application of controlled-release fertilizer is gaining momentum to overcome this crisis. Engineered nanocomposites (ENCs) have shown tremendous promise for need-based delivery of agrochemicals (macro- and micronutrients, pesticides, and other agrochemicals). This review provides comprehensive coverage of synthesis of nanocomposites, their physical-chemical characterization, and techniques to achieve sustained release and targeted delivery to the crops, emphasizing their beneficial role in plant production and protection. Related aspects like feasibility of the application, commercialization of the nanoformulations, and biosafety concerns are also highlighted. This will be helpful to develop a critical understanding of the current state of the art in the controlled release of agrochemicals through nanocomposites. The pressing issues like scale up production, cost analyses, field-based trials, and environmental safety concerns should be given greater attention in future studies.
Collapse
Affiliation(s)
- Titir Guha
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Geetha Gopal
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
11
|
Wu Y, Huang Y, Huang H, Muhammad Y, Huang Z, Winarta J, Zhang Y, Nie S, Zhao Z, Mu B. Porous Fe@C Composites Derived from Silkworm Excrement for Effective Separation of Anisole Compounds. ACS OMEGA 2019; 4:21204-21213. [PMID: 31867514 PMCID: PMC6921619 DOI: 10.1021/acsomega.9b02681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/18/2019] [Indexed: 05/12/2023]
Abstract
Silkworm excrement is a very useful biomass waste, composed of layer-structured fats and proteins, which are great precursors for carbon composite materials. In this work, new porous composites derived from silkworm excrement were prepared for selective separation of flavor 4-methylanisole from the binary 4-methylanisole/4-anisaldehyde mixture. In particular, the silkworm excrement, possessing a unique nanosheet structure, is converted into a graphite-like carbon by a simple calcination strategy followed by a metal-ion-doping procedure. This Fe@C composite exhibits a special nano-spongy morphology, anchoring Fe3C/Fe5C2 on the carbon nanosheets. Density functional theory simulations showed that 4-methylanisole presents a stronger π-π interaction and attraction forces with sp2 carbon nanosheets in Fe@C composites than 4-anisaldehyde. The selective adsorption experiments further confirmed that the Fe@C composites exhibited a 4-methylanisole capacity of 7.3 mmol/g at 298 K and the highest selectivity of 17 for an equimolar 4-methylanisole/4-anisaldehyde mixture among the examined adsorbents including MOFs and commercial activated carbon materials, which demonstrates the potential of this low-cost and eco-friendly porous carbon material as a promising sustainable adsorbent.
Collapse
Affiliation(s)
- Yuxiang Wu
- School
of Chemistry and Chemical Engineering and Guangxi Key Laboratory for Agro-Environment
and Agro-Product Safety, Guangxi University, Nanning 530004, China
| | - Yan Huang
- Guangzhou
Huafang Tobacco Flavors Co., Ltd., Guangzhou 510530, China
| | - Hong Huang
- School
of Chemistry and Chemical Engineering and Guangxi Key Laboratory for Agro-Environment
and Agro-Product Safety, Guangxi University, Nanning 530004, China
| | - Yaseen Muhammad
- Institute
of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Zuqiang Huang
- School
of Chemistry and Chemical Engineering and Guangxi Key Laboratory for Agro-Environment
and Agro-Product Safety, Guangxi University, Nanning 530004, China
| | - Joseph Winarta
- School
for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yanjuan Zhang
- School
of Chemistry and Chemical Engineering and Guangxi Key Laboratory for Agro-Environment
and Agro-Product Safety, Guangxi University, Nanning 530004, China
| | - Shuangxi Nie
- School
of Chemistry and Chemical Engineering and Guangxi Key Laboratory for Agro-Environment
and Agro-Product Safety, Guangxi University, Nanning 530004, China
| | - Zhongxing Zhao
- School
of Chemistry and Chemical Engineering and Guangxi Key Laboratory for Agro-Environment
and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Guangzhou
Huafang Tobacco Flavors Co., Ltd., Guangzhou 510530, China
- E-mail: (Z.Z.)
| | - Bin Mu
- School
for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
- E-mail: (B.M.)
| |
Collapse
|
12
|
Bao Y, Guo A, Ma J, Pan C, Hu L. Citric acid and glycine reduce the uptake and accumulation of Fe 2O 3 nanoparticles and oxytetracycline in rice seedlings upon individual and combined exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133859. [PMID: 31421347 DOI: 10.1016/j.scitotenv.2019.133859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Uptake of nanoparticles and antibiotics by plants is root exudates-dependent, however, the underlying influence processes and mechanisms from different root exudates are rarely investigated. A hydroponic experiment was conducted to investigate the accumulation of Fe2O3 nanoparticle (NP) and oxytetracycline (OTC) in rice seedlings, in the absence or presence of citric acid or glycine, acting as components of root exudates. Irrespective of individual or combined exposure of Fe2O3 NP and OTC, citric acid and glycine both reduced surface-Fe, surface-OTC, root-OTC, shoot-OTC accumulations with dose-effect relationship. Two exudates increased |ζ| values of NP, which weakened the interactive attraction between NP and root surface and then decreased surface-Fe accumulation. Citric acid and glycine binding with OTC in solution decreased surface-OTC accumulation, and further decreased root-OTC and shoot-OTC accumulations. Combined exposure of two pollutants alleviated the reduction effect of citric acid and glycine on surface-Fe/surface-OTC/root-OTC accumulations due to their high accumulations in combined exposure compared to individual exposure. Although citric acid and glycine promoted TFroot-shoot and TFsurface-root of two pollutants, respectively, they always decreased total rice-Fe and rice-OTC accumulations. Therefore, the presence of root exudates decreased the bioaccumulation of Fe2O3 NP and OTC in rice upon their individual and combined exposure through changing their environmental behaviors in rhizosphere.
Collapse
Affiliation(s)
- Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Aiyun Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinyu Ma
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Chengrong Pan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lu Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
13
|
Huang G, Ding C, Hu Z, Cui C, Zhang T, Wang X. Topdressing iron fertilizer coupled with pre-immobilization in acidic paddy fields reduced cadmium uptake by rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1040-1047. [PMID: 29913566 DOI: 10.1016/j.scitotenv.2018.04.369] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Soil cadmium (Cd) contamination has become a serious problem in China. This study was conducted to test the effects of basal application of hydrated lime and iron fertilizer alone or together and topdressing of iron fertilizer at the tillering stage alone or coupled with basal application of hydrated lime, on reducing the accumulation of Cd in brown rice grown in an acidic paddy field slightly contaminated with Cd. The results showed that Cd in brown rice (BR-Cd) was dependent on not only the pH increase and CaCl2-extractable Cd reduction in the soil due to lime amendment but also Cd sequestration by the iron plaque on root surfaces. However, lime significantly decreased the amounts of Fe and Cd in the iron plaque on the surface of rice root. Topdressing of ferrous sulfate at the tillering stage resulted in the highest Fe and Cd sequestration in the iron plaque. Compared with the control (0.71 mg kg-1 BR-Cd), the basal application of lime and ferrous sulfate alone or together reduced BR-Cd by 45.8%, 18.3%, and 53.1%, respectively; topdressing of ferrous sulfate alone reduced BR-Cd by 23.6%, and topdressing of ferrous sulfate at the tillering stage coupled with basal application of lime yielded the lowest BR-Cd level with a 74.6% reduction. This result was further confirmed by field experiments at two sites in the following year.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaoyun Hu
- Agricultural Technology Extension Center of Yi'an District, Tongling 244100, China
| | - Caihong Cui
- Agricultural Technology Extension Center of Yi'an District, Tongling 244100, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
14
|
Anderson AJ, McLean JE, Jacobson AR, Britt DW. CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6513-6524. [PMID: 28481096 DOI: 10.1021/acs.jafc.7b01302] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.
Collapse
Affiliation(s)
- Anne J Anderson
- Department of Biology , Utah State University , Logan , Utah 84322-5305 , United States
| | - Joan E McLean
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory , Utah State University , Logan , Utah 84322-8200 , United States
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate , Utah State University , Logan , Utah 84322-4820 , United States
| | - David W Britt
- Department of Bioengineering , Utah State University , Logan , Utah 84322-4105 , United States
| |
Collapse
|
15
|
Kulikova NA, Polyakov AY, Lebedev VA, Abroskin DP, Volkov DS, Pankratov DA, Klein OI, Senik SV, Sorkina TA, Garshev AV, Veligzhanin AA, Garcia Mina JM, Perminova IV. Key Roles of Size and Crystallinity of Nanosized Iron Hydr(oxides) Stabilized by Humic Substances in Iron Bioavailability to Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11157-11169. [PMID: 29206449 DOI: 10.1021/acs.jafc.7b03955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants. We have prepared two samples of leonardite HS-stabilized iron-based materials with substantially different properties using the reported protocols and studied their physical chemical state in relation to iron uptake and other biological effects. We used Mössbauer spectroscopy, XRD, SAXS, and TEM to conclude on iron speciation, size, and crystallinity. One material (Fe-HA) consisted of polynuclear iron(III) (hydr)oxide complexes, so-called ferric polymers, distributed in HS matrix. These complexes are composed of predominantly amorphous small-size components (<5 nm) with inclusions of larger crystalline particles (the mean size of (11 ± 4) nm). The other material was composed of well-crystalline feroxyhyte (δ'-FeOOH) NPs with mean transverse sizes of (35 ± 20) nm stabilized by small amounts of HS. Bioavailability studies were conducted on wheat plants under conditions of iron deficiency. The uptake studies have shown that small and amorphous ferric polymers were readily translocated into the leaves on the level of Fe-EDTA, whereas relatively large and crystalline feroxyhyte NPs were mostly sorbed on the roots. The obtained data are consistent with the size exclusion limits of cell wall pores (5-20 nm). Both samples demonstrated distinct beneficial effects with respect to photosynthetic activity and lipid biosynthesis. The obtained results might be of use for production of iron-based nanomaterials stabilized by HS with the tailored iron availability to plants. They can be applied as the only source for iron nutrition as well as in combination with the other elements, for example, for industrial production of "nanofortified" macrofertilizers (NPK).
Collapse
Affiliation(s)
- Natalia A Kulikova
- Department of Soil Science, Lomonosov Moscow State University , Leninskie gory 1-12, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences , pr. Leninskii 33, 119071 Moscow, Russia
| | - Alexander Yu Polyakov
- Department of Materials Science, Lomonosov Moscow State University , Leninskie gory 1-73, 119991 Moscow, Russia
| | - Vasily A Lebedev
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
- Department of Materials Science, Lomonosov Moscow State University , Leninskie gory 1-73, 119991 Moscow, Russia
| | - Dmitry P Abroskin
- Department of Soil Science, Lomonosov Moscow State University , Leninskie gory 1-12, 119991 Moscow, Russia
| | - Dmitry S Volkov
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
| | - Denis A Pankratov
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
| | - Olga I Klein
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences , pr. Leninskii 33, 119071 Moscow, Russia
| | - Svetlana V Senik
- Komarov Botanical Institute, Russian Academy of Sciences , ul. Professora Popova 2, 197376 St. Petersburg, Russia
| | - Tatiana A Sorkina
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
- Science & Technology Department, Rusnano LLC. , 10A, prospect 60-letia Oktyabrya, 117036 Moscow, Russia
| | - Alexey V Garshev
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
- Department of Materials Science, Lomonosov Moscow State University , Leninskie gory 1-73, 119991 Moscow, Russia
| | - Alexey A Veligzhanin
- National Research Center "Kurchatov Institute" , 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Jose M Garcia Mina
- Department of Environmental Biology, BACh group, Sciences School, University of Navarra , C/Irunlarrea 1, 31008 na, Pamplona, Spain
| | - Irina V Perminova
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-3, 119991 Moscow, Russia
| |
Collapse
|