1
|
Zhang J, Xu J, Zhang M. The influence of non-starch polysaccharides on the formation mechanism of wheat dough. Int J Biol Macromol 2024; 282:136268. [PMID: 39366600 DOI: 10.1016/j.ijbiomac.2024.136268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The study examined the effects of oat β-glucan (OβG), chitosan (CTS), araboxylan (AX), and fructosan (FOS) on wheat dough formation. Adding 0-7 % OβG, AX, and FOS increased SS content, enhancing gluten stability. D-AX and D-FOS showed higher β-sheet structures, higher air retention and gluten network, smaller pores and denser structures, higher elastic and viscosity moduli. Excessive OβG and CTS could reduce the dough stability, and β-turn and β-sheet ratios, respectively. Therefore, B-7AX and B-7FOS exhibited lower hardness indices during storage, leading to a smoother appearance and more orderly gas chamber distribution. The study provides a theoretical foundation for using non-starch polysaccharides in flour-based products.
Collapse
Affiliation(s)
- Jing Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Tianjin Agricultural University, Tianjin 300392, PR China; Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Jinchuan Xu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Tianjin Agricultural University, Tianjin 300392, PR China; Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin Agricultural University, Tianjin 300392, PR China.
| | - Min Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Tianjin Agricultural University, Tianjin 300392, PR China; Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin Agricultural University, Tianjin 300392, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Zhang Y, Liu C, Yang M, Ou Z, Lin Y, Zhao F, Han S. Characterization and application of a novel xylanase from Halolactibacillus miurensis in wholewheat bread making. Front Bioeng Biotechnol 2022; 10:1018476. [PMID: 36177175 PMCID: PMC9513849 DOI: 10.3389/fbioe.2022.1018476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of arabinoxylan in wholewheat flour affects its quality significantly. Here, an efficient arabinoxylan hydrolytic enzyme, Hmxyn, from Halolactibacillus miurensis was identified and heterologously expressed in pichia pastoris. Moreover, its relevant properties, including potential application in the wholewheat bread were evaluated. Recombinant Hmxyn exhibited maximal activity at 45°C and pH 6.5, and was stable at mid-range temperature (<55°C) and pH (5.5–8.0) conditions. Hmxyn had a clear hydrolysis effect on wheat arabinoxylan in dough and caused the degradation of the water-unextractable arabinoxylan, which increased the content of wheat soluble arabinoxylan of dough. The fermentation characteristics results and microstructure analysis revealed that Hmxyn improved the organizational structure and air holding capacity of fermented dough, thus promoting the dough expansion. Baking experiments further showed that Hmxyn significantly increased specific volume- and texture-linked properties of wholewheat breads. This study indicates the application potential of Hmxyn in the preparation of wholewheat bread.
Collapse
Affiliation(s)
- Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chun Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Manli Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zuyun Ou
- Dongguan Huamei Food Co. Ltd., Dongguan, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Fengguang Zhao, ; Shuangyan Han,
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Fengguang Zhao, ; Shuangyan Han,
| |
Collapse
|
3
|
Liu G, Wang ZM, Du N, Zhang Y, Wei Z, Tang XJ, Zhao L, Li C, Deng YY, Zhang MW. Recombinant Rice Quiescin Sulfhydryl Oxidase Strengthens the Gluten Structure through Thiol/Disulfide Exchange and Hydrogen Peroxide Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9106-9116. [PMID: 35736502 DOI: 10.1021/acs.jafc.2c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recombinant rice quiescin sulfhydryl oxidase (rQSOX) has the potential to improve the flour processing quality, but the mechanisms remain unclear. The effects of rQSOX on bread quality, dough rheology, and gluten structure and composition, with glucose oxidase as a positive control, were investigated. rQSOX addition could improve the dough processing quality, as proved by enhanced viscoelastic properties of dough as well as a softer crumb, higher specific volume, and lower moisture loss of bread. These beneficial effects were attributed to gluten protein polymerization and gluten network strengthening, evidenced by the improved concentration of SDS-insoluble gluten and formation of large gluten aggregates and the increased α-helix and β-turn conformation. Furthermore, decreased free sulfhydryl and increased dityrosine in gluten as well as improved H2O2 content in dough suggested that the rQSOX dough strengthening mechanism was mainly based on the formation of disulfide bonds and dityrosine cross-links in gluten by both thiol/disulfide direct exchange and hydrogen peroxide indirect oxidation pathways.
Collapse
Affiliation(s)
- Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhi-Ming Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Du
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - ZhenCheng Wei
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiao-Jun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chao Li
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ming-Wei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
4
|
Zhang T, Guan E, Yang Y, Zhang L, Liu Y, Bian K. Comparison and mechanism analysis of the changes in viscoelasticity and texture of fresh noodles induced by wheat flour lipids. Food Chem 2022; 397:133567. [DOI: 10.1016/j.foodchem.2022.133567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
|
5
|
Zhao L, Wu J, Liu Y, Wang H, Cao C. Effect of Lactobacillus rhamnosus GG fermentation on the structural and functional properties of dietary fiber in bamboo shoot and its application in bread. J Food Biochem 2022; 46:e14231. [PMID: 35535563 DOI: 10.1111/jfbc.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to investigate the effects of Lactobacillus rhamnosus GG (LGG) fermentation on the composition, structure, and functional properties of dietary fiber (DF) in bamboo shoot. Then, we added it to bread to evaluate the texture properties, digestive properties, and functionality of bread. After LGG fermentation, the DF was decomposed into pieces, which had stronger water-swelling capacity and nitrite adsorption capacity. The ability of producing short-chain fatty acids was significantly improved and the digestive resistance was remarkable enhanced as well. Except the bread hardness was increased, there was no significant difference in other texture properties when adding 3% FTDF-LGG to bread. It had good adsorption capacity of cholesterol and more than 25% reduced the release of reducing sugar. Overall, the technic of LGG fermentation had improved functional properties of DF in bamboo shoot, which could be applied to bread production for exerting its effects in the future. PRACTICAL APPLICATIONS: Bamboo shoots are immature and tender stems of bamboo, rich in nutritional value, and rich in DF. Bamboo shoot DF has been proven to have a variety of biological activities, and is the main material for bamboo shoot to exert functional activities. In this study, bamboo shoot DF was modified by LGG fermentation, which showed stronger functional activity, and was successfully applied to bread. This study lays the foundation for the fermented modified bamboo shoot DF and its application in food.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Jiayi Wu
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yihang Liu
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Haixiang Wang
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Zhang T, Guan E, Yang Y, Zhang L, Liu Y, Bian K. Underlying mechanism governing the influence of peanut oil addition on wheat dough viscoelasticity and Chinese steamed bread quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wang Z, Hao J, Deng Y, Liu J, Wei Z, Zhang Y, Tang X, Zhou P, Iqbal Z, Zhang M, Liu G. Viscoelastic properties, antioxidant activities and structure of wheat gluten modified by rice bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Utilization of apricot kernel skins by ultrasonic treatment of the dough to produce a bread with better flavor and good shelf life. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
PDI-Regulated Disulfide Bond Formation in Protein Folding and Biomolecular Assembly. Molecules 2020; 26:molecules26010171. [PMID: 33396541 PMCID: PMC7794689 DOI: 10.3390/molecules26010171] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.
Collapse
|
10
|
Du N, Wei ZC, Deng YY, Zhang Y, Tang XJ, Li P, Huang YB, Zeng QH, Wang JJ, Zhang MW, Liu G. Characterization of recombinant rice quiescin sulfhydryl oxidase and its improvement effect on wheat flour-processing quality. Food Chem 2020; 333:127492. [PMID: 32659673 DOI: 10.1016/j.foodchem.2020.127492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023]
Abstract
In this study, recombinant rice quiescin sulfhydryl oxidase (rQSOX) was expressed and characterized, and its performance in flour-processing quality was further evaluated. The purified rQSOX exhibited the highest sulfhydryl oxidation activity (1.96 IU/mg) using dithiothreitol as a substrate, accompanying the production of H2O2. The optimal temperature and pH were 60 °C and pH 8.0 for rQSOX catalyzing oxidation of dithiothreitol. And rQSOX retained 50% of its maximum activity after incubation at 80 °C for 1 h. Moreover, rQSOX supplementation improved the farinograph properties of dough, indicated by the increased dough stability time and decreased degree of softening, and enhanced viscoelastic properties of the dough. Addition of rQSOX (10 IU/g flour) provided remarkable improvement in specific volume (37%) and springiness (17%) of the steamed bread, and significantly reduced the hardness by half, which was attributed to the strengthened gluten network. The results provide an understanding for rQSOX using in flour-processing industry.
Collapse
Affiliation(s)
- Nian Du
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Life Science, Yangtze University, Jingzhou, Hubei 434020, China
| | - Zhen-Cheng Wei
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiao-Jun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan-Bo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jing-Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ming-Wei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
11
|
Ruan Y, Xu Y, Zhang W, Zhang R. A new maltogenic amylase from Bacillus licheniformis R-53 significantly improves bread quality and extends shelf life. Food Chem 2020; 344:128599. [PMID: 33223297 DOI: 10.1016/j.foodchem.2020.128599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/10/2020] [Accepted: 11/06/2020] [Indexed: 11/26/2022]
Abstract
Maltogenic amylase suppressed starch retrogradation in baked products. Here, a maltogenic amylase-producing strain of bacteria was screened and identified as Bacillus licheniformis R-53. Its coding gene was cloned and over-expressed in Bacillus subtilis WB600. Recombinant maltogenic amylase BLMA exhibited activity of 3235 U/mg under optimal conditions (60 °C and pH 6.5), with a good thermostability and pH stability. Mixolab experiment showed that a concentration of 60 ppm BLMA significantly improved the operating characteristics of dough. Baking test indicated the recombinant BLMA reduced bread hardness by 2.12 times compared with the control. Compared with maltogenic amylase from Novozymes (Novamyl 3D BG) and Angel Yeast Co. Ltd. (MAM100), BLMA has better effect on improving the bread volume, and almost the same effect on reducing hardness, improving elasticity and maintaining sensory as Novamyl 3D BG. Adding BLMA improved bread quality, increased bread volume and decreased hardness during storage, thus extending its shelf life.
Collapse
Affiliation(s)
- Yingqi Ruan
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
12
|
Huang Z, Wang JJ, Chen Y, Wei N, Hou Y, Bai W, Hu SQ. Effect of water-soluble dietary fiber resistant dextrin on flour and bread qualities. Food Chem 2020; 317:126452. [PMID: 32106008 DOI: 10.1016/j.foodchem.2020.126452] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
A new water-soluble resistant dextrin (WSRD), fabricated by thermal-acid treatment following amylase hydrolysis from corn starch, was expected to strengthen the dietary fibers intake of flour products. This study was to investigate the effects of WSRD on flour processing quality, and further dissect its improvement mechanisms by farinographic and rheological analysis, SDS-PAGE, Fourier transform infrared spectroscopy, texture analyzer, etc. Results showed that WSRD greatly improved the viscoelasticity and strength of dough, which was predominantly contributed by its formation of gel-like networks. Meanwhile, the WSRD-induced increase of gluten aggregates and β-sheet conformation provided the structural basis for enhancing dough quality. Notably, WSRD greatly promoted the sensory appearance and crumb quality of baked breads. Moreover, the WSRD-treated breads resisted the hydrolysis of digestive fluid and enzymes. Therefore, WSRD can strengthen the processing qualities and nutritional values of flour products, which will broaden the application of the novel dietary fiber in flour industry.
Collapse
Affiliation(s)
- Zheng Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Jing Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Food Science and Technology, Foshan University, Foshan 528000, China
| | - Yu Chen
- Guangdong Food Industry Research Institute Co Ltd, Guangzhou 511400, China
| | - Na Wei
- Guangdong Food Industry Research Institute Co Ltd, Guangzhou 511400, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Weidong Bai
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
13
|
Liu R, Sun W, Zhang Y, Huang Z, Hu H, Zhao M, Li W. Development of a novel model dough based on mechanically activated cassava starch and gluten protein: Application in bread. Food Chem 2019; 300:125196. [DOI: 10.1016/j.foodchem.2019.125196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
14
|
Zhang Y, Chen M, Chen Y, Hou Y, Hu SQ. Characterization and Exploration of Recombinant Wheat Catalase for Improvement of Wheat-Flour-Processing Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2660-2669. [PMID: 30739449 DOI: 10.1021/acs.jafc.8b06646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The wheat catalase gene ( wcat1) was cloned and overexpressed in Pichia pastoris. The purified wCat1 exhibits its highest activity at pH 7.5 and 35 °C with Km and Vmax of 22.95 mM and 0.24 μmol/min, respectively. wCat1 could markedly improve the farinographic properties of dough, with the stability time increasing and degree of softening decreasing, and enhance the rheological properties of dough. wCat1 could also elevate bread-making quality, with increased specific volume of the bread and decreased hardness, gumminess, and chewiness, which are attributable to increased amounts of SDS-insoluble protein in dough, resulting in extended glutenin networks and thus larger pores in the fermented dough and bread crumb. The decrease of hydrogen peroxide and increase of free thiol groups in wCat1-treated dough suggest that the decomposition of hydrogen peroxide by wCat1 likely promotes disulfide-bond formation and thus the cross-linking of dough proteins.
Collapse
Affiliation(s)
- Yaping Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Meirong Chen
- Graduate School of Life Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Yu Chen
- Guangdong Food Industry Research Institute Company Ltd. , Guangzhou , Guangdong 511400 , China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| |
Collapse
|
15
|
Effects of different molecular weight water-extractable arabinoxylans on the physicochemical properties and structure of wheat gluten. Journal of Food Science and Technology 2018; 56:340-349. [PMID: 30728576 DOI: 10.1007/s13197-018-3494-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/09/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
The effects of water-extractable arabinoxylans (WEAXs) with different molecular weights on the physicochemical properties and structure of wheat gluten were studied, a transition between β-turns in β-leaves in the structure of gluten has been demonstrated by Fourier transform infrared spectroscopy when WEAX samples were added. The ratio of weakly hydrogen-bonded β-sheets to strongly hydrogen-bonded β-sheets tended to decrease with increasing WEAX content. FT-Raman analysis demonstrated other changes in the structure of gluten concerning β-structures, the conformation of the disulfide bridges, and aromatic amino acid environments; these changes were dependent on the molecular weight of the WEAX. Native WEAXs of different molecular weights that are present as discrete fragments of the cell wall have had a negative effect on the properties of gluten. However, low molecular weight WEAX has helped gluten maintain the left-left conformation of its disulfide bonds. In addition, the gluten elasticity was reduced by the native WEAX to make it softer, but the WEAX low molecular weight impeded this process and improved the gluten network.
Collapse
|
16
|
Sun X, Chen M, Jia F, Hou Y, Hu SQ. Crystal Structure of Wheat Glutaredoxin and Its Application in Improving the Processing Quality of Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12079-12087. [PMID: 30346751 DOI: 10.1021/acs.jafc.8b03590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glutaredoxin (Grx) is a ubiquitous oxidoreductase that plays a vital role in maintaining cellular redox homeostasis. In comparison to Grx from other organisms, plant Grx is unique in that it has many isoforms, which, thus, suggests probably diverse functions and mechanisms. Therefore, structure-function characterization of plant Grx is necessary to have in-depth knowledge and explore its application in industry. In this study, wheat Grx (wGrx) was overexpressed and purified and the crystal structure of wGrx was determined at 2.94 Å resolution. Interestingly, the structure for the first time captured both the oxidized form and the transient state of reduced-oxidized wGrx in a crystal. The mutagenesis of wGrx suggests that it adopts a monothiol catalytic mechanism. wGrx has the ability to reduce wheat thioredoxin (wTrx), and this is the first example of the reduction of thioredoxin subgroup h class II by Grx. Flour farinograph and dynamic rheological analysis showed that wGrx together with wTrx has a positive effect on dough formation, which is probably attributed to the increased sodium dodecyl sulfate (SDS)-insoluble gluten macropolymer (GMP) through increasing the intermolecular disulfide bond induced by the wGrx-wTrx system. The results indicate great potential of wGrx-wTrx as a novel synergetic enzymatic additive and may be employed to fine-tune the processing performance of food related to the redox reaction.
Collapse
Affiliation(s)
- Xiaomei Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Meirong Chen
- Graduate School of Life Science , Hokkaido University , Sapporo , Hokkaido 060-0810 , Japan
| | - Feng Jia
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Song-Qing Hu
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510641 , People's Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
17
|
Liu G, Wang J, Hou Y, Huang YB, Wang J, Li C, Guo S, Li L, Hu SQ. Characterization of wheat endoplasmic reticulum oxidoreductin 1 and its application in Chinese steamed bread. Food Chem 2018; 256:31-39. [PMID: 29606453 DOI: 10.1016/j.foodchem.2018.02.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/04/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022]
Abstract
This study investigated characteristics of recombinant wheat Endoplasmic Reticulum Oxidoreductin 1 (wEro1) and its influence on Chinese steamed bread (CSB) qualities. The purified wEro1 monomer, which contained two conserved redox active motif sites, bound to flavin adenine dinucleotide (FAD) cofactor with a molecular weight of ∼47 kDa. wEro1 catalyzed the reduction of both bound and free FAD, and its reduction activity of free FAD reached 7.8 U/mg. Moreover, wEro1 catalyzed the oxidation of dithiothreitol and wheat protein disulfide isomerase (wPDI). Both glutathione and the reduced ribonuclease could work as electron donors for wEro1 in catalyzing the oxidation of wPDI. Additionally, wEro1 supplementation improved the CSB qualities with an increased specific volume of CSB and decreased crumb hardness, which was attributed to water-insoluble wheat proteins increasing and gluten network strengthening. The results give an understanding of the properties and function of wEro1 to facilitate its application especially in the flour-processing industry.
Collapse
Affiliation(s)
- Guang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - JingJing Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yan-Bo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - JiaJia Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Cunzhi Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - ShiJun Guo
- Guangzhou Panyu Polytechnic, Guangzhou 511483, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Song-Qing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|