1
|
Leng F, Ye Y, Zhou J, Jia H, Zhu X, Shi J, Zhang Z, Shen N, Wang L. Transcriptomic and Weighted Gene Co-expression Correlation Network Analysis Reveal Resveratrol Biosynthesis Mechanisms Caused by Bud Sport in Grape Berry. FRONTIERS IN PLANT SCIENCE 2021; 12:690095. [PMID: 34220913 PMCID: PMC8253253 DOI: 10.3389/fpls.2021.690095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Resveratrol is a natural polyphenol compound produced in response to biotic and abiotic stresses in grape berries. However, changes in resveratrol caused by bud sport in grapes are scarcely reported. In this study, trans-resveratrol and cis-resveratrol were identified and quantified in the grape berries of 'Summer Black' and its bud sport 'Nantaihutezao' from the veraison to ripening stages using ultra performance liquid chromatography-high resolution tandem mass spectrometry (UPLC-HRMS). We found that bud sport accumulates the trans-resveratrol earlier and increases the contents of cis-resveratrol in the earlier stages but decreases its contents in the later stages. Simultaneously, we used RNA-Seq to identify 51 transcripts involved in the stilbene pathways. In particular, we further identified 124 and 19 transcripts that negatively correlated with the contents of trans-resveratrol and cis-resveratrol, respectively, and four transcripts encoding F3'5'H that positively correlated with the contents of trans-resveratrol by weighted gene co-expression network analysis (WGCNA). These transcripts may play important roles in relation to the synergistic regulation of metabolisms of resveratrol. The results of this study can provide a theoretical basis for the genetic improvement of grapes.
Collapse
Affiliation(s)
- Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yunling Ye
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jialing Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Huijuan Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement of the Ministry of Agriculture/Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaoheng Zhu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement of the Ministry of Agriculture/Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jiayu Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ziyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Leng F, Duan S, Song S, Zhao L, Xu W, Zhang C, Ma C, Wang L, Wang S. Comparative Metabolic Profiling of Grape Pulp during the Growth Process Reveals Systematic Influences under Root Restriction. Metabolites 2021; 11:metabo11060377. [PMID: 34208022 PMCID: PMC8230651 DOI: 10.3390/metabo11060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
The compositions and contents of metabolites in the pulp tissue play critical roles in the fruit quality for table grape. In this study, the effects of root restriction (RR) on the primary and secondary metabolites of pulp tissue at five developmental stages were studied at the metabolomics level, using “Red Alexandria” grape berry (Vitis vinifera L.) as materials. The main results were as follows: 283 metabolites were annotated by using ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS); 28 and 16 primary metabolites contents were increased and decreased, and 11 and 19 secondary metabolites contents were increased and decreased, respectively, along the berry development; RR significantly decreased 12 metabolites (four amino acids and derivatives, three organic acids, four flavonoids and one other compound) contents, and improved 40 metabolites (22 amino acids and derivatives, six nucleotides, four carbohydrates, four cofactors, three cinnamic acids and one other compound) accumulation at the different developmental stages. Altogether, our study would be helpful to increase our understanding of grape berry’s responses to RR stress.
Collapse
Affiliation(s)
- Feng Leng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shuyan Duan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
- Correspondence: ; Tel.: +86-021-5474-0271
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (F.L.); (S.D.); (S.S.); (L.Z.); (W.X.); (C.Z.); (C.M.); (S.W.)
- Key Laboratory of Agro-Products Processing Technology of Shandong, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
3
|
Li J, Liu B, Li X, Li D, Han J, Zhang Y, Ma C, Xu W, Wang L, Jiu S, Zhang C, Wang S. Exogenous Abscisic Acid Mediates Berry Quality Improvement by Altered Endogenous Plant Hormones Level in "Ruiduhongyu" Grapevine. FRONTIERS IN PLANT SCIENCE 2021; 12:739964. [PMID: 34659307 PMCID: PMC8519001 DOI: 10.3389/fpls.2021.739964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/31/2021] [Indexed: 05/22/2023]
Abstract
Abscisic acid (ABA) plays a key role in fruit development and ripening in non-climacteric fruit. A variety of metabolites such as sugars, anthocyanins, fatty acids, and several antioxidants, which are regulated by various phytohormones, are important components of fruit quality in grape. Here, grape cultivar "Ruiduhongyu" was used to investigate the relationship between endogenous phytohormones and metabolites associated to grape berry quality under exogenous ABA treatment. 500 mg/L ABA significantly improved the appearance parameters and the content of many metabolites including sugar, anthocyanin, and other compounds. Exogenous ABA also increased the contents of ABA, auxin (IAA), and cytokinins (CTKs), and transcription level of ABA biosynthesis and signaling related genes in fruit. Furthermore, a series of genes involved in biosynthesis and the metabolite pathway of sugars, anthocyanins, and fatty acids were shown to be significantly up-regulated under 500 mg/L ABA treatment. In addition, Pearson correlation analysis demonstrated that there existed relatively strong cooperativities in the ABA/kinetin (KT)-appearance parameters, ABA/IAA/KT-sugars, ABA/indolepopionic acid (IPA)/zeatin riboside (ZR)-anthocyanins, and gibberellin 3 (GA3)/methyl jasmonate (MeJA)-fatty acids, indicating that 13 kinds of endogenous phytohormones induced by ABA had different contributions to the accumulation of quality-related metabolites, while all of them were involved in regulating the overall improvement of grape fruit quality. These results laid a primary foundation for better understanding that exogenous ABA improves fruit quality by mediating the endogenous phytohormones level in grape.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Boyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiangyi Li,
| | - Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Han
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Lei Wang,
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Leng F, Cao J, Ge Z, Wang Y, Zhao C, Wang S, Li X, Zhang Y, Sun C. Transcriptomic Analysis of Root Restriction Effects on Phenolic Metabolites during Grape Berry Development and Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9090-9099. [PMID: 32806110 DOI: 10.1021/acs.jafc.0c02488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, the effects of root restriction (RR) on the main phenolic metabolites and the related gene expression at different developmental stages were studied at the transcriptomic and metabolomic levels in "Summer Black" grape berries (Vitis vinifera × Vitis labrusca). The results were as follows: seven phenolic acid compounds, three stilbene compounds, nine flavonol compounds, 10 anthocyanin compounds, and 24 proanthocyanidin compounds were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry. RR treatment significantly promoted the biosynthesis of phenolic acid, trans-resveratrol, flavonol, and anthocyanin and also affected the proanthocyanidin content, which was elevated in the early developmental stages and then reduced in the late developmental stages. The functional genes for phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, shikimate O-hydroxycinnamoyl transferase, chalcone synthase, chalcone isomerase, stilbene synthase, flavonoid 3',5'-hydroxylase, anthocyanidin 3-O-glucosyltransferase, and the transcription factors MYBA1, MYBA2, MYBA3, and MYBA22 were inferred to play critical roles in the changes regulated by RR treatment.
Collapse
Affiliation(s)
- Feng Leng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Shiping Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Yanli Zhang
- Yangzhou Ruiyang Ecological Horticulture Co., Ltd, Yangzhou 225009, P. R. China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| |
Collapse
|
5
|
Chen Q, Deng B, Gao J, Zhao Z, Chen Z, Song S, Wang L, Zhao L, Xu W, Zhang C, Wang S, Ma C. Comparative Analysis of miRNA Abundance Revealed the Function of Vvi-miR828 in Fruit Coloring in Root Restriction Cultivation Grapevine ( Vitis vinifera L.). Int J Mol Sci 2019; 20:ijms20164058. [PMID: 31434233 PMCID: PMC6720769 DOI: 10.3390/ijms20164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
Root restriction cultivation leads to early maturation and quality improvement, especially in the anthocyanin content in grapevine. However, the molecular mechanisms that underlie these changes have not been thoroughly elucidated. In this study, four small RNA libraries were constructed, which included the green soft stage (GS) and ripe stage (RS) of ‘Muscat’ (Vitis vinifera L.) grape berries that were grown under root restriction (RR) and in traditional cultivation (no root restriction, CK). A total of 162 known miRNAs and 14 putative novel miRNAs were detected from the four small RNA libraries by high-throughput sequencing. An analysis of differentially expressed miRNAs (DEMs) revealed that 13 miRNAs exhibited significant differences in expression between RR and CK at the GS and RS stages, respectively. For different developmental stages of fruit, 23 and 34 miRNAs showed expression differences between the GS and RS stages in RR and CK, respectively. The expression patterns of the eight DEMs and their targets were verified by qRT-PCR, and the expression profiles of target genes were confirmed to be complementary to the corresponding miRNAs in RR and CK. The function of Vvi-miR828, which showed the down regulated expression in the RS stage under root restriction, was identified by gene transformation in Arabidopsis. The anthocyanin content significantly decreased in transgenic lines, which indicates the regulatory capacity of Vvi-miR828 in fruit coloration. The miRNA expression pattern comparison between RR and CK might provide a means of unraveling the miRNA-mediated molecular process regulating grape berry development under root restricted cultivation.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bohan Deng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zili Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Agro-Food Science and Technology/Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Comparative Metabolic Profiling of Grape Skin Tissue along Grapevine Berry Developmental Stages Reveals Systematic Influences of Root Restriction on Skin Metabolome. Int J Mol Sci 2019; 20:ijms20030534. [PMID: 30695987 PMCID: PMC6386830 DOI: 10.3390/ijms20030534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022] Open
Abstract
This research aimed to comparatively evaluate the influences of root restriction (RR) cultivation and traditional cultivation (RC) on grape berry skin metabolomics using a non-targeted metabolomics method. Two-hundred-and-ninety-one metabolites were annotated and the kinetics analyses showed that berry skin metabolome is stage- and cultivation-dependent. Our results showed that RR influences significantly the metabolomes of berry skin tissues, particularly on secondary metabolism, and that this effect is more obvious at pre-veraison stage, which was evidenced by the early and fast metabolic shift from primary to secondary metabolism. Altogether, this study provided an insight into metabolic adaptation of berry skin to RR stress and expanded general understanding of berry development.
Collapse
|