1
|
Harada K, Fukuda Y, Ohkubo T, Sugaya K, Osaki Y. Correlation between the metabolic profile of Nelumbo Seed, a component of Seishinrenshiin, and its inhibitory activity on bladder smooth muscle contraction. J Nat Med 2025; 79:556-567. [PMID: 40106217 PMCID: PMC12058941 DOI: 10.1007/s11418-025-01889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Seishinrenshiin (SRI), a Kampo formula, is often used for frequent urination. Nelumbo Seed, a crude-drug component of SRI was reported to inhibit bladder smooth muscle contraction using excised rat bladder tissues. However, the active ingredients of Nelumbo Seed have not yet been identified. In this study, we investigated the active ingredients of Nelumbo Seed that inhibit bladder smooth muscle contraction. We obtained liquid chromatography/mass spectrometry profiles of extracts prepared from five types of Nelumbo Seed materials from different production areas and evaluated their inhibitory effects on excised rat bladder smooth muscle contraction. Analysis of these data using orthogonal projections to latent structures revealed neferine (Nef) as the compound with the highest variable influence on projection. Among the Nelumbo Seed materials processed using different methods, the Nef content was the highest in 'Sekirenshi', when embryo and pericarp were not removed at all. We determined the effects of administering Nelumbo Seed extracts with different Nef content on frequent-urination model rats. The Nef content in rat plasma was the highest when the Sekirenshi extract was administered, but Nef was not detected when seed embryos were removed. In this model, administration of the Nelumbo Seed extract improved the maximum bladder contraction pressure and bladder contraction interval, albeit not significantly. In particular, Sekirenshi tended to reduce the maximum bladder contraction pressure compared to other Nelumbo Seed. Our results indicate that although Nef in Nelumbo Seed does not clearly improve frequent urination, it might contribute to the improvement of urination disorder.
Collapse
Affiliation(s)
- Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan.
| | - Yuki Fukuda
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Takahiro Ohkubo
- Central R&D Laboratory, KOBAYASHI Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Kimio Sugaya
- Southern Knights' Laboratory Co., Ltd, 1-1-823 Miyagi, Chatan, Okinawa, 904-0113, Japan
| | - Yukihiko Osaki
- Central R&D Laboratory, KOBAYASHI Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| |
Collapse
|
2
|
Kanai T, Shirahata T, Nakamori S, Koizumi Y, Kodaira E, Sato N, Fuchino H, Kawano N, Kawahara N, Hoshino T, Yoshimatsu K, Kobayashi Y. Development of a determination method for quality control markers utilizing metabolic profiling and its application on processed Zingiber officinale Roscoe rhizome. J Nat Med 2024; 78:952-969. [PMID: 39096421 PMCID: PMC11937189 DOI: 10.1007/s11418-024-01837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
This study established an Orthogonal Partial Least Squares (OPLS) model combining 1H-NMR and GC-MS data to identify characteristic metabolites in complex extracts. Both in metabolomics studies, and natural product chemistry, the reliable identification of marker metabolites usually requires laborious isolation and purification steps, which remains a bottleneck in many studies. Both ginger (GR) and processed ginger (PGR) are listed in the Japanese pharmacopeia. The plant of origin, the rhizome of Zingiber officinale Roscoe, is differently processed for these crude drugs. Notably, the quality of crude drugs is affected by genetic and environmental factors, making it difficult to maintain a certain quality standard. Therefore, characteristic markers for the quality control of GR and PGR are required. Metabolomic analysis using 1H-NMR was able to discriminate between GR and PGR, but there were unidentified signals that were difficult to distinguish based on NMR data alone. Therefore, we combined 1H-NMR and GC-MS analytical data to identify them by OPLS. As a result, αr-curcumene was found to be a useful marker for these identifications. This new approach enabled rapid identification of characteristic marker compounds and reduced the labor involved in the isolation process.
Collapse
Affiliation(s)
- Tomohisa Kanai
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Shunsuke Nakamori
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yota Koizumi
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Eiichi Kodaira
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Noriaki Kawano
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
- The Kochi Prefectural Makino Botanical Garden, Godaisan, Kochi, 781-8125, Japan
| | - Takayuki Hoshino
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
3
|
Kitazoe T, Usui C, Kodaira E, Maruyama T, Kawano N, Fuchino H, Yamamoto K, Kitano Y, Kawahara N, Yoshimatsu K, Shirahata T, Kobayashi Y. Improved quantitative analysis of tenuifolin using hydrolytic continuous-flow system to build prediction models for its content based on near-infrared spectroscopy. J Nat Med 2024; 78:296-311. [PMID: 38172356 DOI: 10.1007/s11418-023-01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
This study used two types of analyses and statistical calculations on powdered samples of Polygala root (PR) and Senega root (SR): (1) determination of saponin content by an independently developed quantitative analysis of tenuifolin content using a flow reactor, and (2) near-infrared spectroscopy (NIR) using crude drug powders as direct samples for metabolic profiling. Furthermore, a prediction model for tenuifolin content was developed and validated using multivariate analysis based on the results of (1) and (2). The goal of this study was to develop a rapid analytical method utilizing the saponin content and explore the possibility of quality control through a wide-area survey of crude drugs using NIR spectroscopy. Consequently, various parameters and appropriate wavelengths were examined in the regression analysis, and a model with a reasonable contribution rate and prediction accuracy was successfully developed. In this case, the wavenumber contributing to the model was consistent with that of tenuifolin, confirming that this model was based on saponin content. In this series of analyses, we have succeeded in developing a model that can quickly estimate saponin content without post-processing and have demonstrated a brief way to perform quality control of crude drugs in the clinical field and on the market.
Collapse
Affiliation(s)
- Tatsuki Kitazoe
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Chisato Usui
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Eiichi Kodaira
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takuro Maruyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Noriaki Kawano
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Hiroyuki Fuchino
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Kazuhiko Yamamoto
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yasushi Kitano
- Nippon Funmatsu Yakuhin Co., Ltd, 2-5-11, Doshomachi, Chuo-ku, Osaka, 541-0045, Japan
| | - Nobuo Kawahara
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
- The Kochi Prefectural Makino Botanical Garden, Godaisan, Kochi, 781-8125, Japan
| | - Kayo Yoshimatsu
- National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
4
|
Luo X, Huang L, Cai X, Zhou L, Zhou S, Yuan Y. Structure and core taxa of bacterial communities involved in extracellular electron transfer in paddy soils across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157196. [PMID: 35810886 DOI: 10.1016/j.scitotenv.2022.157196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities with extracellular electron transfer (EET) activity are capable of driving geochemical changes and cycles, but a comprehensive understanding of the key microbiota responsible for EET in complex soil matrices is still lacking. Herein, the EET activities, in terms of maximum current density (jmax) and accumulated charge output (Cout), of 41 paddy soils across China were evaluated from the exoelectrogenic properties with a conventional bioelectrochemical system (BES). The jmax with a range of 8.85 × 10-4 to 0.41 A/m2 and Cout with a range of 0.27 to 172.21C were obtained from these soil-based BESs. The bacterial community analyses revealed that the most abundant phylum, order, and genus were Firmicutes, Clostridiales, and Clostridum-sensus-stricto 10, respectively. Bacterial network analysis displayed the positive correlations between the majority of electroactive bacteria-containing genera and multiple other genera, indicating their underlying cooperation for the EET. Partial least squares regression (PLSR) model showed remarkable performance in describing the EET activity with 75 most abundant genera as input variables, identified that 32 genera were very important for governing the EET activities. Multiple linear regression (MLR) analyses further prioritized that the genera norank-c-Berkelbacteria and Fonticella were the key contributors, while the genus Paenibacillus was the key competitor against bacterial exoelectrogenesis in paddy soils. Moreover, the spearman analysis showed that the abundance of these keystone taxa was mainly influenced by the carbon content and pH. This approach provides a promising avenue to monitor the microbial activities in paddy soils as well as the links between microbial community composition and ecological function.
Collapse
Affiliation(s)
- Xiaoshan Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lingyan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
6
|
Chen Q, Jiao T, Yang M, Li H, Ahmad W, Hassan MM, Guo Z, Ali S. Pre etched Ag nanocluster as SERS substrate for the rapid quantification of AFB1 in peanut oil via DFT coupled multivariate calibration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118411. [PMID: 32474366 DOI: 10.1016/j.saa.2020.118411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The current study extends the use of surface-enhanced Raman spectroscopy (SERS) combined with density functional theory (DFT) and multivariate calibration towards the rapid quantification of aflatoxin B1 (AFB1) in peanut oil samples. It reports the design of pre etched Ag nanocluster as an active SERS substrate for quantifying AFB1, after being impregnated on its surface. The SERS spectra of AFB1@pre etched Ag nanocluster was recorded and its respective theoretical spectrum was calculated by density functional theory (DFT) to assign the characteristic peaks. The baseline drift and rotation effects were masked by the first-order derivative preprocessing method followed by multivariate calibration. The BP-AdaBoost model exhibited optimum prediction (Rp = 0.9283 and 0.9332) ability over the concentration range 5-100 and 100-1000 ngmL-1, respectively. The limit of detection calculated was 5.0 ngmL-1 and the obtained recoveries were in the range from 90.4% to 113.1% in spiked peanut oil samples. Additionally, precision analysis revealed an RSD ca. 5%, suggesting the applicability of the pre etched Ag nanocluster SERS substrate towards AFB1 detection. Thus, the proposed SERS platform exploiting DFT and BP-AdaBoost model was found reproducible for the quantification of AFB1 in peanut oil.
Collapse
Affiliation(s)
- Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingxiu Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
7
|
Mais E, Alolga RN, Wang SL, Linus LO, Yin X, Qi LW. A comparative UPLC-Q/TOF-MS-based metabolomics approach for distinguishing Zingiber officinale Roscoe of two geographical origins. Food Chem 2018; 240:239-244. [PMID: 28946267 DOI: 10.1016/j.foodchem.2017.07.106] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/15/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
Ginger, the rhizome of Zingiber officinale Roscoe, is a popular spice used in the food, beverage and confectionary industries. In this study, we report an untargeted UPLC-Q/TOF-MS-based metabolomics approach for comprehensively discriminating between ginger from two geographical locations, Ghana in West Africa and China. Forty batches of fresh ginger from both countries were discriminated using principal component analysis and orthogonal partial least squares discrimination analysis. Sixteen differential metabolites were identified between the gingers from the two geographical locations, six of which were identified as the marker compounds responsible for the discrimination. Our study highlights the essence and predictive power of metabolomics in detecting minute differences in same varieties of plants/plant samples based on the levels and composition of their metabolites.
Collapse
Affiliation(s)
- Enos Mais
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Shi-Lei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Loveth O Linus
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Xiaojin Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China.
| |
Collapse
|