1
|
Kuehl B, Raman S, Becker A, Garg V, Roberts-Dobie J, McCaslin A, Brensdal J, Attinger J, Burton L, Forrester M, Hohmann A, Cochran EW. Fully Atom-Efficient Solvent-Mediated Biopolymer Manufacturing: A Base Case Illustrated with Macromolecular Surfactants Tailored to Stable Polymer-Water Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59280-59290. [PMID: 39422669 DOI: 10.1021/acsami.4c12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This work introduces a novel 1-pot, 0-waste, 0-VOC methodology for synthesizing polymeric surfactants using acrylated epoxidized soybean oil and acrylated glycerol as primary monomers. These macromolecular surfactants are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, allowing for tunable hydrophilic-lipophilic balance (HLB) and ionic properties. We characterize the copolymers' chemical composition and surface-active properties, and evaluate their effectiveness in forming and stabilizing emulsions of semiepoxidized soybean oil and poly(acrylated epoxidized high oleic soybean oil). Comprehensive analyses, including gel permeation chromatography, nuclear magnetic resonance spectroscopy, dynamic light scattering, particle size distribution, zeta potential, and critical micelle concentration, provide detailed insights into the copolymers and the emulsions they form. The results demonstrate that the RAFT-polymerized surfactants offer long-lasting stability and effectively disperse both common oil-in-water emulsions and highly viscous and hydrophobic polymer latexes. These surfactants outperform traditional small molecule surfactants by reducing particle size and preventing phase separation, even over extended storage periods. Stable polymer-water interfaces are achieved through HLB control, tailored by monomer composition, and the final product requires no additional purification since polymerization occurs in liquid surfactants. While small molecules contribute to rapid micelle formation, the polymeric components enhance long-term stability through steric repulsion and slower dynamics. This method enables even the emulsification of polymers with submicron particle size, which ordinarily requires emulsion polymerization. Integrating biobased polymeric surfactants with advanced polymer processing techniques opens new possibilities for transforming highly hydrophobic polymers into latexes, facilitating downstream applications. This innovation enhances the environmental sustainability of surfactant production and broadens the potential for polymer emulsification technologies. Additionally, the integrated solution-processing approach demonstrated here can be applied to other emerging polymers, where judiciously selected nonvolatile solvents facilitate the polymerization and play a role in the final application.
Collapse
Affiliation(s)
- Baker Kuehl
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Sharan Raman
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Andrew Becker
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Vivek Garg
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jefferson Roberts-Dobie
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Anna McCaslin
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Joran Brensdal
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jacques Attinger
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lauren Burton
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Forrester
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Austin Hohmann
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W Cochran
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Niu C, An Y, Yang Y, Wang R, Li T. Dodecenyl
succinic‐β‐cyclodextrin
with high degree of substitution: Synthesis, characterization and evaluation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunmei Niu
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Yingjie An
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Yuxuan Yang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Ruolin Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Tiantian Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
| |
Collapse
|
3
|
Ye S, Zhang W, Zhai Z, Song B, Shang S, Song Z. Fully bio-based CO2-responsive Pickering gel emulsions stabilized by cellulose nanocrystals combined with a rosin-based surfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Wang J, Zhang K, Zhang L, Song Z, Shang S, Liu H, Wang D. Preparation and stabilization of Pickering emulsions by cationic cellulose nanocrystals synthesized from deep eutectic solvent. Int J Biol Macromol 2022; 209:1900-1913. [PMID: 35487379 DOI: 10.1016/j.ijbiomac.2022.04.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
In this work, short rod-like cationic cellulose nanocrystals (AH-CNCs) were prepared by sodium periodate oxidation combined with deep eutectic solvent method. The effects of different content AH-CNCs on the properties of the emulsion were studied. With the increase of AH-CNCs content, the diameter of emulsion droplets decreased and the stabilization time prolonged. The electrostatic attraction between the negative charge accumulated at the oil-water interface and AH-CNCs with positive charge improved the stability of the emulsion. Then, the rheological properties showed the interaction of nanocellulose in the continuous phase increased the viscosity of the emulsion. In addition, the droplet diameter of emulsion of 120 s was smaller at different ultrasonic time, the particle size distribution of emulsion changed from monodisperse to polydisperse with the increase of oil volume, the salt concentration had little effect on the droplet size of emulsion, and the preparation of emulsion under acidic conditions was more stable.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Kaitao Zhang
- Fiber and Particle Engineering Research Unit University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Lei Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Dan Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
5
|
Emulsions stabilized by a CO2 - switchable surfactant based on rigid rosin with or without charged nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Wang X, Hou R, Zhang Q, Darwesh OM, Gao M, Zhang Z, Wang Y. Enhancing the Stability of Asphalt Emulsion Using Environmentally Friendly Cationically Modified Hydroxyethyl Cellulose (CMHEC) at Different Concentrations and pH Values. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
The cationically modified hydroxyethyl cellulose (CMHEC) was synthesized successfully and applied for preparing the cationic asphalt emulsion. The apparent viscosity and phase separation of the emulsion were studied at different CMHEC concentrations and pH values. The results indicated that the apparent viscosity of the emulsion was increased with increasing CMHEC concentration, and the phase separation was significantly reduced correspondingly. In addition, the effect of pH value on the emulsion quality was involved. The apparent viscosity of the emulsion showed the tendency to decrease firstly and then increase to the minimum value at pH 2. All results indicated that CMHEC has excellent potential in the manufacture of asphalt emulsion and the research of the pH effect on the formulation of asphalt emulsion has essential significance.
Collapse
Affiliation(s)
- Xiaoxi Wang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Runhan Hou
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Qian Zhang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Osama M. Darwesh
- School of Material Sciences and Engineering, Hebei University of Technology , Tianjin , China
- Department of Agricultural Microbiology, National Research Centre, Dokki , Cairo , Egypt
| | - Mengyao Gao
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Zixu Zhang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| | - Yuexin Wang
- School of Chemical Engineering, Hebei University of Technology , Tianjin , China
| |
Collapse
|
7
|
Lu Z, Huang J, E S, Li J, Si L, Yao C, Jia F, Zhang M. All cellulose composites prepared by hydroxyethyl cellulose and cellulose nanocrystals through the crosslink of polyisocyanate. Carbohydr Polym 2020; 250:116919. [DOI: 10.1016/j.carbpol.2020.116919] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
|
8
|
Pour-Esmaeil S, Sharifi-Sanjani N, Khoee S, Taheri-Qazvini N. Biocompatible chemical network of α-cellulose-ESBO (epoxidized soybean oil) scaffold for tissue engineering application. Carbohydr Polym 2020; 241:116322. [PMID: 32507210 DOI: 10.1016/j.carbpol.2020.116322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022]
Abstract
Despite many desirable properties, the use of α-cellulose in biomedical applications is limited because of its poor processability. Here we demonstrate that the chemical network of α-cellulose and epoxidized soybean oil (ESBO) can be adequately processed into biocompatible, self-standing, highly-porous scaffolds for tissue engineering applications. First, α-cellulose was dissolved in N-Methylmorpholine N-oxide monohydrate (NMMO.MH) and chemically crosslinked by ESBO. Then, the porous scaffolds of α-cellulose-ESBO were fabricated by solvent exchange and freeze-drying techniques. The scaffolds were evaluated for morphology, thermal and mechanical stability, and in vitro cell attachment and cell viability. Scanning electron microscopy images and Brunauer-Emmett-Teller results suggested that porous scaffolds provide a good surface and internal structure for cell adhesion and growth. Specifically, the α-cellulose-ESBO scaffolds support the homogeneous attachment and proliferation of MG63 cells. Overall, our results suggest that α-cellulose-ESBO chemically crosslinked networks are biocompatible and demonstrate a remarkable capacity for the development of tissue engineering platforms.
Collapse
Affiliation(s)
- Sajad Pour-Esmaeil
- Polymer Laboratory, Nano-Chemistry Division, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
| | - Naser Sharifi-Sanjani
- Polymer Laboratory, Nano-Chemistry Division, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran.
| | - Sepideh Khoee
- Polymer Laboratory, Nano-Chemistry Division, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, United States; Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, United States
| |
Collapse
|
9
|
Yang X, Li Z, Liu H, Ma L, Huang X, Cai Z, Xu X, Shang S, Song Z. Cellulose-based polymeric emulsifier stabilized poly(N-vinylcaprolactam) hydrogel with temperature and pH responsiveness. Int J Biol Macromol 2020; 143:190-199. [DOI: 10.1016/j.ijbiomac.2019.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
|
10
|
Wang X, Wu M, Zhang B, Zhang Y, Hu C, Shi L, Lv Y, Ran R. Phase-transfer method synthesis hydroxyethyl cellulose lauryl ether. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Yan X, Zhai Z, Xu J, Song Z, Shang S, Rao X. CO 2-Responsive Pickering Emulsions Stabilized by a Bio-based Rigid Surfactant with Nanosilica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10769-10776. [PMID: 30256645 DOI: 10.1021/acs.jafc.8b03458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel CO2-responsive surfactant, maleopimaric acid glycidyl methacrylate ester 3-(dimethylamino)propylamine imide (MPAGN), based on sustainable resource of rosin was synthesized and used to prepare a kind of CO2-responsive Pickering emulsions with nanosilica. MPAGN can be reversibly responsive to CO2 and N2 between active cationic (MPAGNH+) and inactive nonionic (MPAGN), leading to adsorb on or desorb from the surface of nanosilica, then stabilize or break emulsion. CO2-responsive behavior of MPAGN was verified by cycle change of pH and conductivity with bubbling CO2 and N2 alternately. The type of adsorption of MPAGNH+ at the particle-water interface was explained according to the adsorption isotherms. The mechanisms of stabilization, destabilization, and restabilization of Pickering emulsion were analyzed according to zeta potentials and droplet size. This Pickering emulsion can be reversible between stable and unstable by bubbling CO2 and N2 alternately. Moreover, this emulsifier can be recycled when new oil was added after removing the initial oil. Therefore, it not only has economic benefits but also has an environmentally friendly property.
Collapse
Affiliation(s)
- Xinyan Yan
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Zhaolan Zhai
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Ji Xu
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
- Research Institute of Forestry New Technology , CAF , No. 1 Xiangshan Road , Haidian District, Beijing , 100091 , China
| | - Xiaoping Rao
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University . No. 159 Longpan Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
- Research Institute of Forestry New Technology , CAF , No. 1 Xiangshan Road , Haidian District, Beijing , 100091 , China
| |
Collapse
|