1
|
Han S, Liu H, Li S, Zheng Z, Yan Q, Jiang Z. High level production of a β-fructofuranosidase in Aspergillusniger for the preperation of prebiotic bread using in situ enzymatic conversion. Food Res Int 2025; 208:116225. [PMID: 40263796 DOI: 10.1016/j.foodres.2025.116225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/11/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Fructooligosaccharides (FOS) are applied in food, pharmaceutical, and cosmetics. The large scale production of FOS through enzymatic conversion is limited by the expression level and properties of β-fructofuranosidases. A β-fructofuranosidase (AnFTase70) gene from Aspergillus niger was successfully overexpressed in A. niger FBL-B (ΔglaA, ΔamyA, Δaamy, ΔpyrG). The highest β-fructofuranosidase activity of 15,006 U/mL was produced by high-cell density fermentation in a 200 L fermentor, and is so far the highest value ever reported. AnFTase70 was most active at 55 °C and pH 5.5, respectively. It showed high specific activity of 812.0 and 91.8 U/mg towards sucrose and raffinose. AnFTase70 efficiently produced melibiose and FOS with a yield of 55.7 % and 60.6 %, respectively. The membrane filtration system significantly increased the FOS content from 56.1 % to 95.3 % (w/w) with a FOS yield of 69.1 %. Moreover, AnFTase70 was added into bread making to produce a rich prebiotic bread with the highest FOS content of 3.3 g/100 g by in situ enzyme conversion. This study provides a promising way for efficient production of β-fructofuranosidase in A. niger as well as in situ synthesis of FOS in foods.
Collapse
Affiliation(s)
- Susu Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shusen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Ziwei Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Huang H, Zhang L, Guan L, Zhang L. Metabolome and transcriptome reveal the biosynthesis of flavonoids and amino acids in Isatis indigotica fruit during development. PHYSIOLOGIA PLANTARUM 2024; 176:e14617. [PMID: 39528904 DOI: 10.1111/ppl.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
Isatis indigotica Fort. is a famous medicinal plant that is also used as a natural dye and functional vegetable. The characteristics of the I. indigotica fruit during development are largely unknown, information that is essential for the exploitation and seedlings cultivation of I. indigotica. In this study, the biochemical, metabolite characteristics and gene expression profiling of I. indigotica at four developmental stages were investigated. A total of 428 metabolites were detected and categorized into 17 categories. High contents of anthocyanins, especially cyanidin 3-glucoside, might contribute to the purple colouration of I. indigotica fruits. Moreover, dozens of flavonoid components, including taxifolin, quercetin, astragalin and isovitexin 2″-O-beta-D-glucoside, and several other active components were also up-regulated in mature fruits. The abundance of antioxidants might endow a significantly stronger antioxidant activity of mature I. indigotica fruits compared to many other reported species. Enrichment analyses revealed that flavonoid and anthocyanin biosynthesis genes were mostly enriched in up-regulated gene sets during fruit development. The up-regulated structural genes, including IiCHS, IiCHI, IiF3H, IiDFR, IiANS, IiFLS, IiUGT, and transcription factors such as IiMYBs, IibHLHs and IiNACs were identified as candidate regulators of flavonoid and anthocyanin biosynthetic pathway. Furthermore, biosynthesis of amino acids was enriched in all pairwise comparisons of metabolites in fruits at four developmental stages. The differential accumulation of amino acids might result from the differentially expressed genes involved in amino acid biosynthesis. Taken together, these findings provide a comprehensive understanding of metabolite profiling and gene expression patterns in I. indigotica fruit during maturity, which is useful for pharmaceutical extractions and seedling cultivation of I. indigotica.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Li Zhang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Liye Guan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Libin Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Liu J, Feng X, Liang L, Sun L, Meng D. Enzymatic biosynthesis of D-galactose derivatives: Advances and perspectives. Int J Biol Macromol 2024; 267:131518. [PMID: 38615865 DOI: 10.1016/j.ijbiomac.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
D-Galactose derivatives, including galactosyl-conjugates and galactose-upgrading compounds, provide various physiological benefits and find applications in industries such as food, cosmetics, feed, pharmaceuticals. Many research on galactose derivatives focuses on identification, characterization, development, and mechanistic aspects of their physiological function, providing opportunities and challenges for the development of practical approaches for synthesizing galactose derivatives. This study focuses on recent advancements in enzymatic biosynthesis of galactose derivatives. Various strategies including isomerization, epimerization, transgalactosylation, and phosphorylation-dephosphorylation were extensively discussed under the perspectives of thermodynamic feasibility, theoretical yield, cost-effectiveness, and by-product elimination. Specifically, the enzymatic phosphorylation-dephosphorylation cascade is a promising enzymatic synthesis route for galactose derivatives because it can overcome the thermodynamic equilibrium of isomerization and utilize cost-effective raw materials. The study also elucidates the existing challenges and future trends in enzymatic biosynthesis of galactose derivatives. Collectively, this review provides a real-time summary aimed at promoting the practical biosynthesis of galactose derivatives through enzymatic catalysis.
Collapse
Affiliation(s)
- Juanjuan Liu
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinming Feng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China
| | - Likun Liang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Liqin Sun
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China.
| | - Dongdong Meng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
4
|
Chen Z, Shen Y, Wang R, Li S, Jia Y. Expression and characterization of a protease-resistant β-d-fructofuranosidase BbFFase9 gene suitable for preparing invert sugars from soybean meal. Heliyon 2023; 9:e19889. [PMID: 37809427 PMCID: PMC10559283 DOI: 10.1016/j.heliyon.2023.e19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
A novel gene (BbFFase9), with an ORF of 1557 bp that encodes β-d-fructofuranosidase from Bifidobacteriaceae bacterium, was cloned and expressed in Escherichia coli. The recombinant protein (BbFFase9) was successfully purified and showed a single band with a molecular mass of 66.2 kDa. This was confirmed as a β-d-fructofuranosidase and exhibited a high specific activity of 209.2 U/mg. Although BbFFase9 was a soluble protein, it exhibited excellent tolerance to proteases such as pepsin, trypsin, acidic protease, neutral protease and Flavourzyme®, indicating its potential applicability in different fields. BbFFase9 exhibited typical invertase activity, and highly catalyzed the hydrolysis of the α1↔2β glycosidic linkage in molecules containing fructosyl moieties but with no detectable fructosyltransferase activity. It was optimally active at pH 6.5 and 50 °C and stable between pH 6.0 and 9.0 at a temperature of up to 45 °C for 30 min BbFFase9 could also effectively hydrolyze galacto-oligosaccharides, which are a flatulence factor in soybean meal, thus releasing new types of product such as melibiose and mannotriose, or degrading them into invert sugars, the sweeter fructose and glucose. This study is the first to report the application of this type of β-d-fructofuranosidase.
Collapse
Affiliation(s)
- Zhou Chen
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yimei Shen
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Run Wang
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Siting Li
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingmin Jia
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
5
|
Li K, Shi W, Song Y, Qin L, Zang C, Mei T, Li A, Song Q, Zhang Y. Reprogramming of lipid metabolism in hepatocellular carcinoma resulting in downregulation of phosphatidylcholines used as potential markers for diagnosis and prediction. Expert Rev Mol Diagn 2023; 23:1015-1026. [PMID: 37672012 DOI: 10.1080/14737159.2023.2254884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Aberrant methylation and metabolic perturbations may deepen our understanding of hepatocarcinogenesis and help identify novel biomarkers for diagnosing hepatocellular carcinoma (HCC). We aimed to develop an HCC model based on a multi-omics. RESEARCH DESIGN AND METHODS Four hundred patient samples (200 with HCC and 200 with hepatitis B virus-related liver disease (HBVLD)) were subjected to liquid chromatography-mass spectrometry and multiplex bisulfite sequencing. Integrative analysis of clinical data, CpG data, and metabolome for the 20 complete imputation datasets within a for-loopwas used to identify biomarker. RESULTS Totally, 1,140 metabolites were annotated, of which 125 were differentially expressed. Lipid metabolism reprogramming in HCC, resulting in phosphatidylcholines (PC) significantly downregulated, partly due to the altered mitochondrial beta-oxidation of fatty acids with diverse chain lengths. Age, sex, serum-fetoprotein levels, cg05166871,cg14171514, cg18772205, PC (O-16:0/20:3(8Z, 11Z, 14Z)), and PC (16:1(9Z)/P-18:0) were used to develop the HCC model. The model presented a good diagnostic and an acceptable predictive performance. The cumulative incidence of HCC in low- and high-risk groups of HBVLD patients were 1.19% and 21.40%, respectively (p = 0.0039). CONCLUSIONS PCs serve as potential plasma biomarkers and help identify patients with HBVLD at risk of HCC who should be screened for early diagnosis and intervention.
Collapse
Affiliation(s)
- Kang Li
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Wanting Shi
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Yi Song
- Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Qin
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Chaoran Zang
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Tingting Mei
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Qingkun Song
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Yonghong Zhang
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Chen Z, Shen Y, Xu J. A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing. Foods 2023; 12:foods12081704. [PMID: 37107499 PMCID: PMC10137638 DOI: 10.3390/foods12081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
A chemical gene synthesis strategy was developed in order to obtain β-D-fructofuranosidase, and a novel gene, AlFFase3, was characterized from Aspergillus luchuensis and expressed in Escherichia coli. The recombinant protein was purified, showing a molecular mass of 68.0 kDa on SDS-PAGE, and displaying a specific activity towards sucrose of up to 771.2 U mg-1, indicating its exceptional enzymatic capacity. AlFFase3 exhibited stability between pH 5.5 and 7.5, with maximal activity at pH 6.5 and 40 °C. Impressively, AlFFase3, as a soluble protein, was resistant to digestion by various common proteases, including Flavourzyme, acidic protease, pepsin, neutral protease, Proteinase K, alkaline proteinase, and trypsin. AlFFase3 also demonstrated significant transfructosylation activity, with a yield of various fructooligosaccharides up to 67%, higher than almost all other reports. Furthermore, we demonstrated that the addition of AlFFase3 enhanced the growth of probiotics in yogurt, thereby increasing its nutritional value. AlFFase3 also improved the formation of yogurt gel, reducing the gel formation time and lowering the elasticity while increasing its viscosity, thereby improving the palatability of yogurt and reducing production costs.
Collapse
Affiliation(s)
- Zhou Chen
- Beijing Technology and Business University, Beijing 100048, China
| | - Yimei Shen
- Beijing Technology and Business University, Beijing 100048, China
| | - Jiangqi Xu
- Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Chen Z, Shen Y, Xu J. Efficient Degradation for Raffinose and Stachyose of a β-D-Fructofuranosidase and Its New Function to Improve Gel Properties of Coagulated Fermented-Soymilk. Gels 2023; 9:gels9040345. [PMID: 37102957 PMCID: PMC10137817 DOI: 10.3390/gels9040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
A novel β-D-fructofuranosidase gene was identified via database mining from Leptothrix cholodnii. The gene was chemically synthesized and expressed in Escherichia coli, resulting in the production of a highly efficient enzyme known as LcFFase1s. The enzyme exhibited optimal activity at pH 6.5 and a temperature of 50 °C while maintaining stability at pH 5.5-8.0 and a temperature below 50 °C. Furthermore, LcFFase1s exhibited remarkable resistance to commercial proteases and various metal ions that could interfere with its activity. This study also revealed a new hydrolysis function of LcFFase1s, which could completely hydrolyze 2% raffinose and stachyose within 8 h and 24 h, respectively, effectively reducing the flatulence factor in legumes. This discovery expands the potential applications of LcFFase1s. Additionally, the incorporation of LcFFase1s significantly reduced the particle size of coagulated fermented-soymilk gel, resulting in a smoother texture while maintaining the gel hardness and viscosity formed during fermentation. This represents the first report of β-D-fructofuranosidase enhancing coagulated fermented-soymilk gel properties, highlighting promising possibilities for future applications of LcFFase1s. Overall, the exceptional enzymatic properties and unique functions of LcFFase1s render it a valuable tool for numerous applications.
Collapse
Affiliation(s)
- Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yimei Shen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jiangqi Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Zhang SS, Zhang NN, Guo S, Liu SJ, Hou YF, Li S, Ho CT, Bai NS. Glycosides and flavonoids from the extract of Pueraria thomsonii Benth leaf alleviate type 2 diabetes in high-fat diet plus streptozotocin-induced mice by modulating the gut microbiota. Food Funct 2022; 13:3931-3945. [PMID: 35289350 DOI: 10.1039/d1fo04170c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Twenty glycoside derivatives and nine flavonoids from the leaves of Pueraria (P. thomsonii) were isolated by column chromatography and characterized by nuclear magnetic resonance spectroscopy (NMR) and high performance liquid chromatography (HPLC). The contents of twenty glycosides and nine flavonoids from the extract of P. thomsonii leaf (PL) were 173.3 mg g-1 and 134.7 mg g-1, respectively. Two flavonoids with the highest content were robinin (49.28 mg g-1) and puerarin (42.87 mg g-1). Six flavonoids, i.e. puerarin, robinin, rutin, quercetin, quercitrin, and kaempferol showed more inhibitory effects against α-glucosidase than acarbose. PL could effectively increase the level of insulin, decrease the content of fasting blood glucose, reduce lipid accumulation in plasma, ameliorate oxidative injury and inflammation, and relieve liver and kidney damage in diabetic mice. Moreover, PL could increase intestinal probiotics to improve metabolic disorders caused by diabetes and decrease the level of Clostridium celatum to relieve inflammation. This study suggested that PL or its glycoside derivatives and flavonoids regulating glycolipid metabolism and inflammation levels might have the potential to be used to control type 2 diabetes.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.,College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Niu-Niu Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Sen Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Shao-Jing Liu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.,College of Pharmacy, Xi'an Medical University, 1 Xinwang Road, Shaanxi 710021, China
| | - Yu-Fei Hou
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Shiming Li
- College of Life Sciences, Huanggang Normal University, Hubei 438000, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Nai-Sheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| |
Collapse
|
9
|
Elango D, Rajendran K, Van der Laan L, Sebastiar S, Raigne J, Thaiparambil NA, El Haddad N, Raja B, Wang W, Ferela A, Chiteri KO, Thudi M, Varshney RK, Chopra S, Singh A, Singh AK. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? FRONTIERS IN PLANT SCIENCE 2022; 13:829118. [PMID: 35251100 PMCID: PMC8891438 DOI: 10.3389/fpls.2022.829118] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
Raffinose family oligosaccharides (RFOs) are widespread across the plant kingdom, and their concentrations are related to the environment, genotype, and harvest time. RFOs are known to carry out many functions in plants and humans. In this paper, we provide a comprehensive review of RFOs, including their beneficial and anti-nutritional properties. RFOs are considered anti-nutritional factors since they cause flatulence in humans and animals. Flatulence is the single most important factor that deters consumption and utilization of legumes in human and animal diets. In plants, RFOs have been reported to impart tolerance to heat, drought, cold, salinity, and disease resistance besides regulating seed germination, vigor, and longevity. In humans, RFOs have beneficial effects in the large intestine and have shown prebiotic potential by promoting the growth of beneficial bacteria reducing pathogens and putrefactive bacteria present in the colon. In addition to their prebiotic potential, RFOs have many other biological functions in humans and animals, such as anti-allergic, anti-obesity, anti-diabetic, prevention of non-alcoholic fatty liver disease, and cryoprotection. The wide-ranging applications of RFOs make them useful in food, feed, cosmetics, health, pharmaceuticals, and plant stress tolerance; therefore, we review the composition and diversity of RFOs, describe the metabolism and genetics of RFOs, evaluate their role in plant and human health, with a primary focus in grain legumes.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Karthika Rajendran
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Liza Van der Laan
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Sheelamary Sebastiar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Joscif Raigne
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | - Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - Bharath Raja
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Wanyan Wang
- Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Antonella Ferela
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Kevin O. Chiteri
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Surinder Chopra
- Department of Plant Science, Penn State University, University Park, PA, United States
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Liu J, Cheng J, Huang M, Shen C, Xu K, Xiao Y, Pan W, Fang Z. Identification of an Invertase With High Specific Activity for Raffinose Hydrolysis and Its Application in Soymilk Treatment. Front Microbiol 2021; 12:646801. [PMID: 33897661 PMCID: PMC8060482 DOI: 10.3389/fmicb.2021.646801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The hydrolyzation of raffinose into melibiose by using invertases under mild conditions improves the nutritional value of soybean products. However, this strategy has received little attention because a suitable invertase remains lacking. In this study, a novel invertase named InvDz13 was screened and purified from Microbacterium trichothecenolyticum and characterized. InvDz13 was one of the invertases with the highest specific activity toward raffinose. Specifically, it had a specific activity of 229 U/mg toward raffinose at pH 6.5 and 35°C. InvDz13 retained more than 80% of its maximum activity at pH 5.5–7.5 and 25–40°C and was resistant to or stimulated by most cations that presented in soymilk. In soymilk treated with InvDz13 under mild conditions, melibiose concentration increased from 3.1 ± 0.2 to 6.1 ± 0.1 mM due to raffinose hydrolyzation by InvDz13. Furthermore, the prebiotic property of InvDz13-treated soymilk was investigated via in vitro fermentation by human gut microbiota. Results showed that InvDz13 treatment increased the proportion of the beneficial bacteria Bifidobacterium and Lactobacillus by 1.6- and 3.7-fold, respectively. By contrast, the populations of Escherichia and Collinsella decreased by 1.8- and 11.7-fold, respectively. Thus, our results proved that the enzymatic hydrolysis of raffinose in soymilk with InvDz13 was practicable and might be an alternative approach to improving the nutritional value of soymilk.
Collapse
Affiliation(s)
- Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Jing Cheng
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Min Huang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Chen Shen
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Ke Xu
- Anhui RenRenFu Bean Co., Ltd., Hefei, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Wenjuan Pan
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
11
|
Extracellular polysaccharides produced by bacteria of the Leuconostoc genus. World J Microbiol Biotechnol 2020; 36:161. [DOI: 10.1007/s11274-020-02937-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
|
12
|
The K296-D320 region of recombinant levansucrase BA-SacB can affect the sensitivity of Escherichia coli host to sucrose. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01496-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Catalytic biosynthesis of levan and short-chain fructooligosaccharides from sucrose-containing feedstocks by employing the levansucrase from Leuconostoc mesenteroides MTCC10508. Int J Biol Macromol 2019; 127:486-495. [DOI: 10.1016/j.ijbiomac.2019.01.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/23/2023]
|
14
|
Ni D, Xu W, Zhu Y, Zhang W, Zhang T, Guang C, Mu W. Inulin and its enzymatic production by inulosucrase: Characteristics, structural features, molecular modifications and applications. Biotechnol Adv 2019; 37:306-318. [DOI: 10.1016/j.biotechadv.2019.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
|
15
|
Biosynthesis of Raffinose and Stachyose from Sucrose via an In Vitro Multienzyme System. Appl Environ Microbiol 2019; 85:AEM.02306-18. [PMID: 30389762 DOI: 10.1128/aem.02306-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/28/2018] [Indexed: 01/09/2023] Open
Abstract
Herein, we present a biocatalytic method to produce raffinose and stachyose using sucrose as the substrate. An in vitro multienzyme system was developed using five enzymes, namely, sucrose synthase (SUS), UDP-glucose 4-epimerase (GalE), galactinol synthase (GS), raffinose synthase (RS), and stachyose synthase (STS), and two intermedia, namely, UDP and inositol, which can be recycled. This reaction system produced 11.1 mM raffinose using purified enzymes under optimal reaction conditions and substrate concentrations. Thereafter, a stepwise cascade reaction strategy was employed to circumvent the instability of RS and STS in this system, and a 4.2-fold increase in raffinose production was observed. The enzymatic cascade reactions were then conducted using cell extracts to avoid the need for enzyme purification and supplementation with UDP. Such modification further increased raffinose production to 86.6 mM and enabled the synthesis of 61.1 mM stachyose. The UDP turnover number reached 337. Finally, inositol in the reaction system was recycled five times, and 255.8 mM raffinose (128.9 g/liter) was obtained.IMPORTANCE Soybean oligosaccharides (SBOS) have elicited considerable attention because of their potential applications in the pharmaceutical, cosmetics, and food industries. This study demonstrates an alternative method to produce raffinose and stachyose, which are the major bioactive components of SBOS, from sucrose via an in vitro enzyme system. High concentrations of galactinol, raffinose, and stachyose were synthesized with the aid of a stepwise cascade reaction process, which can successfully address the issue of mismatched enzyme characteristics of an in vitro metabolic engineering platform. The biocatalytic approach presented in this work may enable the synthesis of other valuable galactosyl oligosaccharides, such as verbascose and higher homologs, which are difficult to obtain through plant extraction.
Collapse
|
16
|
Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W. Recent advances in Levansucrase and Inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr 2018; 59:3630-3647. [DOI: 10.1080/10408398.2018.1506421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Kirtel O, Menéndez C, Versluys M, Van den Ende W, Hernández L, Toksoy Öner E. Levansucrase from Halomonas smyrnensis AAD6T: first halophilic GH-J clan enzyme recombinantly expressed, purified, and characterized. Appl Microbiol Biotechnol 2018; 102:9207-9220. [DOI: 10.1007/s00253-018-9311-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
|
18
|
Biosynthesis of levan from sucrose using a thermostable levansucrase from Lactobacillus reuteri LTH5448. Int J Biol Macromol 2018; 113:29-37. [DOI: 10.1016/j.ijbiomac.2018.01.187] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022]
|
19
|
Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnol Adv 2018; 36:1540-1552. [PMID: 29935268 DOI: 10.1016/j.biotechadv.2018.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 02/04/2023]
Abstract
Amylosucrase (EC 2.4.1.4, ASase), an outstanding sucrose-utilizing transglucosylase in the glycoside hydrolase family 13, can produce glucans with only α-1,4 linkages. Generally, on account of a double-displacement mechanism, ASase can catalyze polymerization, isomerization, and hydrolysis reactions with sucrose as the sole substrate, and has transglycosylation capacity to attach glucose molecules from sucrose to extra glycosyl acceptors. Based on extensive enzymology research, this review presents the characteristics of various ASases, including their microbial metabolism, preparation, and enzymatic properties, and exhibits structure-based strategies in the improvement of activity, specificity, and thermostability. As a vital transglucosylation tool of producing sugars, carbohydrate-based bioactive compounds, and materials, the bioengineering applications of ASases are also systematically summarized.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Zhao Z, Huang Z, Zhang X, Huang Y, Cui Y, Ma C, Wang G, Freeman T, Lu XY, Pan X, Wu C. Low density, good flowability cyclodextrin-raffinose binary carrier for dry powder inhaler: anti-hygroscopicity and aerosolization performance enhancement. Expert Opin Drug Deliv 2018; 15:443-457. [PMID: 29532682 DOI: 10.1080/17425247.2018.1450865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/07/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hygroscopicity of raffinose carrier for dry powder inhaler (DPI) was the main obstacle for its further application. Hygroscopicity-induced agglomeration would cause deterioration of aerosolization performance of raffinose, undermining the delivery efficiency. METHODS Cyclodextrin-raffinose binary carriers (CRBCs) were produced by spray-drying so as to surmount the above issue. Physicochemical attributes and formation mechanism of CRBCs were explored in detail. The flow property of CRBCs was examined by FT4 Powder Rheometer. Hygroscopicity of CRBCs was elucidated by dynamic vapor sorption study. Aerosolization performance was evaluated by in vitro deposition profile and in vivo pharmacokinetic profile of CRBC based DPI formulations. RESULTS The optimal formulation of CRBC (R4) was proven to possess anti-hygroscopicity and aerosolization performance enhancement properties. Concisely, the moisture uptake of R4 was c.a. 5% which was far lower than spray-dried raffinose (R0, c.a. 65%). R4 exhibited a high fine particle fraction value of 70.56 ± 0.61% and it was 3.75-fold against R0. The pulmonary and plasmatic bioavailability of R4 were significantly higher than R0 (p < 0.05). CONCLUSION CRBC with anti-hygroscopicity and aerosolization performance enhancement properties was a promising approach for pulmonary drug delivery, which could provide new possibilities to the application of hygroscopic carriers for DPI.
Collapse
Affiliation(s)
- Ziyu Zhao
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Zhengwei Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Xuejuan Zhang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
- b Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou , P.R. China
| | - Ying Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Yingtong Cui
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Cheng Ma
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Guanlin Wang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | | | | | - Xin Pan
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Chuanbin Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| |
Collapse
|
21
|
Synthesis of Lactosucrose Using a Recombinant Levansucrase from Brenneria goodwinii. Appl Biochem Biotechnol 2018; 186:292-305. [DOI: 10.1007/s12010-018-2743-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
|