1
|
Liu M, Zhao B, Wang P, Wang B, Li J, Meng N, Li H, Sun J, Sun B. The regulatory mechanism of mannan from millet Huangjiu on flavor release. Carbohydr Polym 2025; 348:122808. [PMID: 39562083 DOI: 10.1016/j.carbpol.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Huangjiu, the national wine of China, has the characteristics of low grain consumption, low alcohol content and high nutrition, which aligns with the world's beverage wine consumption trend. The research on glutinous rice huangjiu from southern China is more extensive, while millet huangjiu from northern China has received less attention, hindering the diversified development of huangjiu. Polysaccharides play an important role in huangjiu's health activity and flavor characteristics. In this study, the polysaccharide components in millet huangjiu were separated and identified for the first time, and the influence of polysaccharides on the flavor release was explored through sensory evaluation, SPME-GC-MS, threshold determination and isothermal titration calorimetry. The millet huangjiu polysaccharide HJ-1 was composed of →3)-α-Manp(1→, α-Manp-(1→, →2,6)-α-Manp-(1→, →3)-α-Xylp-(1→ and →3)-β-Arap-(1→. HJ-1 (0.1-1 mg/mL) could regulate the release performance of key flavor compounds in millet huangjiu, inhibit the herbal, fruity and alcoholic aromas, and promote the sweet and rice aromas. Further studies showed that HJ-1 formed complexes with ethyl acetate, acetic acid, 2,3-butanediol and γ-butyrolactone through van der Waals forces and hydrogen bonds, and the process was a spontaneous exothermic entropy reduction reaction. This study provides a new idea for optimizing the overall aroma of huangjiu and improving its sensory quality.
Collapse
Affiliation(s)
- Mengyao Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Baolong Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Pengyun Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Nan Meng
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; China Food Flavour and Nutrition Health Innovation Centre, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Paulin M, Miot-Sertier C, Miranda J, Vallet-Courbin A, Maupeu J, Delattre C, Coulon J, Moine V, Marchal A, Roi S, Doco T, Dols-Lafargue M. Does Fungal Chitosan Leave Noticeable Traces in Treated Wines? Foods 2024; 13:3367. [PMID: 39517150 PMCID: PMC11544894 DOI: 10.3390/foods13213367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background (1): The use of fungal chitosan as an antiseptic in wine appears as a promising alternative to sulfur dioxide for the elimination of Brettanomyces bruxellensis sensitive strains. Nevertheless, its utilization raises the question, "how are the treated wines different from the untreated ones?" Methods (2): Chitosan treatment residues were sought in the oligosaccharide and polysaccharide fractions and among 224 low MW ions (<1800 g·mol-1) in several wines by using liquid chromatography (size exclusion HPLC or LC-MS) and GC-MS. Standard oenological parameters were also examined as well as possible sensory modifications by a panel of tasters composed of experts and non-experts. Results (3): None of these methods enabled the reproducible and reliable identification of a treated wine without comparing it to its untreated control. The fingerprints of treatment are not reliably detectable by the analytical methods used in this study. However, the treated wines seem permanently protected against the development of chitosan-sensitive strains of B. bruxellensis. Conclusions (4): If chitosan treatment modifies the wine, the associated changes were not identified by the liquid chromatography method mentioned above and they were not perceived by most people in our taster panel. However, the expected antimicrobial action of chitosan was observed on B. bruxellensis sensitive strains and persisted at least one year. Tolerant strains were less affected by these persistent effects.
Collapse
Affiliation(s)
- Margot Paulin
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Cécile Miot-Sertier
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Julie Miranda
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Amélie Vallet-Courbin
- Microflora-ADERA, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (A.V.-C.); (J.M.)
| | - Julie Maupeu
- Microflora-ADERA, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (A.V.-C.); (J.M.)
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institute Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Joana Coulon
- Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France; (J.C.); (V.M.)
| | - Virginie Moine
- Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France; (J.C.); (V.M.)
| | - Axel Marchal
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| | - Stéphanie Roi
- UMR 1083, UMR Sciences pour l’Oenologie, INRA, SupAgro, UM1, 2 Place Viala, F-34060 Cedex Montpellier, France; (S.R.); (T.D.)
| | - Thierry Doco
- UMR 1083, UMR Sciences pour l’Oenologie, INRA, SupAgro, UM1, 2 Place Viala, F-34060 Cedex Montpellier, France; (S.R.); (T.D.)
| | - Marguerite Dols-Lafargue
- ISVV and Institute Pascal, University of Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (M.P.); (C.M.-S.); (J.M.); (A.M.)
| |
Collapse
|
3
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
4
|
Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Sequential Non-Saccharomyces and Saccharomyces cerevisiae Fermentations to Reduce the Alcohol Content in Wine. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decades, the average alcohol content of wine has increased due to climate change and consumer preferences for particular wine styles that resulted in increased grape sugar levels at harvest. Therefore, alcohol reduction is a current challenge in the winemaking industry. Among several strategies under study, the use of non-conventional yeasts in combination with Saccharomyces cerevisiae plays an important role for lowering ethanol production in wines nowadays. In the present work, 33 native non-Saccharomyces strains were assayed in sequential culture with a S. cerevisiae wine strain to determine their potential for reducing the alcohol content in Malvar white wines. Four of the non-Saccharomyces strains (Wickerhamomyces anomalus 21A-5C, Meyerozyma guilliermondii CLI 1217, and two Metschnikowia pulcherrima (CLI 68 and CLI 460)) studied in sequential combination with S. cerevisiae CLI 889 were best able to produce dry wines with decreased alcohol proportion in comparison with one that was inoculated only with S. cerevisiae. These sequential fermentations produced wines with between 0.8% (v/v) and 1.3% (v/v) lower ethanol concentrations in Malvar wines, showing significant differences compared with the control. In addition, these combinations provided favorable oenological characteristics to wines such as high glycerol proportion, volatile higher alcohols, and esters with fruity and sweet character.
Collapse
|
6
|
Abstract
This study was performed with the aim of characterizing the fermentative performance of three commercial strains of Torulaspora delbrueckii and their impact on the production of volatile and non-volatile compounds. Laboratory-scale single culture fermentations were performed using a commercial white grape juice. The addition of commercial nutrient products enabled us to test the yeasts under two different nutrient conditions. The addition of nutrients promoted fermentation intensity from 9% to 20 % with significant differences (p < 0.05) among the strains tested. The strain diversity together with the nutrient availability influenced the production of volatile compounds.
Collapse
|
7
|
Determining 1-kestose, nystose and raffinose oligosaccharides in grape juices and wines using HPLC: method validation and characterization of products from Northeast Brazil. Journal of Food Science and Technology 2019; 56:4575-4584. [PMID: 31686689 DOI: 10.1007/s13197-019-03936-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/06/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
The objective of this work was to validate a method for direct determination in grape juice and wine of 1-kestose, nystose and raffinose oligosaccharides by reversed-phase high-performance liquid chromatography with refractive index detection using a new type of RP-C18 column (150 × 4.6 mm, 4 µm) with polar end-capping. The validated methodology was also used to characterize grape juice and fine wine products from Northeastern Brazil; and presented suitable linearity, precision, recovery, limits of detection and quantification. The method presented good specificity, revealing that sugars, organic acids, and ethanol (the main interferences in refraction detection) did not influence the quantification of the studied oligosaccharides. The main oligosaccharide found was 1-kestose (approximately 50% of the samples), followed by raffinose (20% of the samples). The results obtained in this are an indication that grape juices and wines have the potential to be functional beverages in relation to the presence of prebiotics.
Collapse
|
8
|
Abstract
In the past, some microbiological studies have considered most non-Saccharomyces species to be undesirable spoilage microorganisms. For several decades, that belief made the Saccharomyces genus the only option considered by winemakers for achieving the best possible wine quality. Nevertheless, in recent decades, some strains of non-Saccharomyces species have been proven to improve the quality of wine. Non-Saccharomyces species can positively influence quality parameters such as aroma, acidity, color, and food safety. These quality improvements allow winemakers to produce innovative and differentiated wines. For that reason, the yeast strains Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Schizosaccharomyces pombe, and Pichia kluyveri are now available on the market. Other interesting species, such as Starmerella bacillaris, Meyerozyma guilliermondii, Hanseniospora spp., and others, will probably be available in the near future.
Collapse
|
9
|
Abstract
Candida stellata is an imperfect yeast of the genus Candida that belongs to the order Saccharomycetales, while phylum Ascomycota. C. stellata was isolated originally from a must overripe in Germany but is widespread in natural and artificial habitats. C. stellata is a yeast with a taxonomic history characterized by numerous changes; it is either a heterogeneous species or easily confused with other yeast species that colonize the same substrates. The strain DBVPG 3827, frequently used to investigate the oenological properties of C. stellata, was recently renamed as Starmerella bombicola, which can be easily confused with C. zemplinina or related species like C. lactis-condensi. Strains of C. stellata have been used in the processing of foods and feeds for thousands of years. This species, which is commonly isolated from grape must, has been found to be competitive and persistent in fermentation in both white and red wine in various wine regions of the world and tolerates a concentration of at least 9% (v/v) ethanol. Although these yeasts can produce spoilage, several studies have been conducted to characterize C. stellata for their ability to produce desirable metabolites for wine flavor, such as acetate esters, or for the presence of enzymatic activities that enhance wine aroma, such as β-glucosidase. This microorganism could also possess many interesting technological properties that could be applied in food processing. Exo and endoglucosidases and polygalactosidase of C. stellata are important in the degradation of β-glucans produced by Botrytis cinerea. In traditional balsamic vinegar production, C. stellata shapes the aromatic profile of traditional vinegar, producing ethanol from fructose and high concentrations of glycerol, succinic acid, ethyl acetate, and acetoin. Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 73–74% for Starmerella bombicola. Numerous studies have clearly proven that these macromolecules make multiple positive contributions to wine quality. Recent studies on C. stellata strains in wines made by co-fermentation with Saccharomyces cerevisiae have found that the aroma attributes of the individual strains were apparent when the inoculation protocol permitted the growth and activity of both yeasts. The exploitation of the diversity of biochemical and sensory properties of non-Saccharomyces yeast could be of interest for obtaining new products.
Collapse
|
10
|
The impact of Torulaspora delbrueckii yeast in winemaking. Appl Microbiol Biotechnol 2018; 102:3081-3094. [PMID: 29492641 DOI: 10.1007/s00253-018-8849-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
Commercial Saccharomyces strains are usually inoculated to ferment alcoholic beverages due to their ability to convert all fermentable sugars into ethanol. However, modern trends in winemaking have turned toward less known, non-Saccharomyces yeast species. These species perform the first stages of natural spontaneous fermentation and play important roles in wine variety. New alcoholic fermentation trends have begun to consider objectives other than alcohol production to improve flavor diversity. This review explores the influence of the most used and commercialized non-Saccharomyces yeast, Torulaspora delbrueckii, on fermentation quality parameters, such as ethanol, glycerol, volatile acidity, volatile profile, succinic acid, mannoproteins, polysaccharides, color, anthocyanins, amino acids, and sensory perception.
Collapse
|
11
|
Simonin S, Alexandre H, Nikolantonaki M, Coelho C, Tourdot-Maréchal R. Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking. Food Res Int 2018; 107:451-461. [PMID: 29580506 DOI: 10.1016/j.foodres.2018.02.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/19/2018] [Accepted: 02/13/2018] [Indexed: 01/06/2023]
Abstract
In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. However, scientific data capable of proving the effectiveness of adding these yeasts on grape must is lacking. This study reports the analysis of antimicrobial and antioxidant effects of one non-Saccharomyces yeast, Torulaspora delbrueckii, inoculated at the beginning of the white winemaking process in two Burgundian wineries as an alternative to sulphiting. The implantation of the T. delbrueckii strain was successful in both wineries and had no impact on fermentation kinetics. Adding T. delbrueckii reduced biodiversity during the pre-fermentation stages compared to sulphited controls and it also effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. T. delbrueckii could protect must and wine from oxidation as demonstrated by the analysis of colour and phenolic compounds. This is the first evidence that early addition of T. delbrueckii during winemaking can be a microbiogical and chemical alternative to sulphites. However, its contribution seems to be matrix dependent.
Collapse
Affiliation(s)
- Scott Simonin
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Maria Nikolantonaki
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Christian Coelho
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| |
Collapse
|