1
|
Gebril HM, Aryasomayajula A, de Lima MRN, Uhrich KE, Moghe PV. Nanotechnology for microglial targeting and inhibition of neuroinflammation underlying Alzheimer's pathology. Transl Neurodegener 2024; 13:2. [PMID: 38173014 PMCID: PMC10765804 DOI: 10.1186/s40035-023-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is considered to have a multifactorial etiology. The hallmark of AD is progressive neurodegeneration, which is characterized by the deepening loss of memory and a high mortality rate in the elderly. The neurodegeneration in AD is believed to be exacerbated following the intercoupled cascades of extracellular amyloid beta (Aβ) plaques, uncontrolled microglial activation, and neuroinflammation. Current therapies for AD are mostly designed to target the symptoms, with limited ability to address the mechanistic triggers for the disease. In this study, we report a novel nanotechnology based on microglial scavenger receptor (SR)-targeting amphiphilic nanoparticles (NPs) for the convergent alleviation of fibril Aβ (fAβ) burden, microglial modulation, and neuroprotection. METHODS We designed a nanotechnology approach to regulate the SR-mediated intracellular fAβ trafficking within microglia. We synthesized SR-targeting sugar-based amphiphilic macromolecules (AM) and used them as a bioactive shell to fabricate serum-stable AM-NPs via flash nanoprecipitation. Using electron microscopy, in vitro approaches, ELISA, and confocal microscopy, we investigated the effect of AM-NPs on Aβ fibrilization, fAβ-mediated microglial inflammation, and neurotoxicity in BV2 microglia and SH-SY5Y neuroblastoma cell lines. RESULTS AM-NPs interrupted Aβ fibrilization, attenuated fAβ microglial internalization via targeting the fAβ-specific SRs, arrested the fAβ-mediated microglial activation and pro-inflammatory response, and accelerated lysosomal degradation of intracellular fAβ. Moreover, AM-NPs counteracted the microglial-mediated neurotoxicity after exposure to fAβ. CONCLUSIONS The AM-NP nanotechnology presents a multifactorial strategy to target pathological Aβ aggregation and arrest the fAβ-mediated pathological progression in microglia and neurons.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
| | - Aravind Aryasomayajula
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | | | - Kathryn E Uhrich
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, CA, 92507, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Zhao N, Francis NL, Song S, Kholodovych V, Calvelli HR, Hoop CL, Pang ZP, Baum J, Uhrich KE, Moghe PV. CD36-Binding Amphiphilic Nanoparticles for Attenuation of Alpha Synuclein-Induced Microglial Activation. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100120. [PMID: 36051821 PMCID: PMC9426437 DOI: 10.1002/anbr.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neuroinflammation is one of the hallmarks contributing to Parkinson's Disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular alpha synuclein (aSYN) binding to the CD36 receptor. Here, CD36-binding nanoparticles (NPs) containing synthetic tartaric acid-based amphiphilic polymers (AMs) were rationally designed to inhibit this aSYN-CD36 binding. In silico docking revealed that four AMs with varying alkyl side chain lengths presented differential levels of CD36 binding affinity and that an optimal alkyl chain length would promote the strongest inhibitory activity towards aSYN-CD36 interactions. In vitro competitive binding assays indicated that the inhibitory activity of AM-based NPs plateaued at intermediate side chain lengths of 12- and 18-carbons, supporting the in silico docking predictions. These 12- and 18-carbon length AM NPs also had significantly stronger effects on reducing aSYN internalization and inhibiting the production of the proinflammatory molecules TNF-α and nitric oxide from aSYN-challenged microglia. All four NPs modulated the gene expression of aSYN-challenged microglia, downregulating the expression of the proinflammatory genes TNF, IL-6, and IL-1β, and upregulating the expression of the anti-inflammatory genes TGF-β and Arg1. Overall, this work represents a novel polymeric nanotechnology platform that can be used to modulate aSYN-induced microglial activation in PD.
Collapse
Affiliation(s)
- Nanxia Zhao
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| | - Shuang Song
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Vladyslav Kholodovych
- Office of Advanced Research Computing, 96 Frelinghuysen Road, Rutgers University, NJ, 08854 USA
| | - Hannah R. Calvelli
- Department of Molecular Biology & Biochemistry, 604 Allison Rd, Rutgers University, NJ, 08854 USA
| | - Cody L. Hoop
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 604 Allison Rd, Rutgers University, NJ, 08854 USA
- Child Health Institute of New Jersey, 89 French St, New Brunswick, NJ, 08901 USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Kathryn E. Uhrich
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Prabhas V. Moghe
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| |
Collapse
|
3
|
Tsuzuki S, Kimoto Y, Marui K, Lee S, Inoue K, Sasaki T. Application of a novel fluorescence intensity assay: identification of distinct fatty acetates as volatile compounds that bind specifically to amino acid region 149-168 of a transmembrane receptor CD36. Biosci Biotechnol Biochem 2022; 86:509-518. [PMID: 35102395 DOI: 10.1093/bbb/zbac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022]
Abstract
The cluster of differentiation 36 (CD36) is a transmembrane receptor expressed in various cells and has diverse lipid ligands. The expression of CD36 in the murine olfactory epithelium and its ability to recognize certain species of fatty aldehydes, a class of odor-active volatile compounds, have suggested a role for this receptor in the capture of specific odorants in the nasal cavity of mammals. However, the spectrum of CD36-recognizable volatile compounds is poorly understood. In this study, we employed our recently devised assay with fluorescently labeled peptides as probes (fluorescence intensity assay) and identified distinct fatty acetates as volatile compounds that bind specifically to amino acid region 149-168 of CD36 (eg dodecyl and tetradecyl acetates). The present findings demonstrate the utility of our assay for the discovery of novel CD36 ligands and support the notion that the receptor functions as a captor of volatile compounds in the mammalian olfactory system.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Yusaku Kimoto
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Keita Marui
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Shinhye Lee
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Tsutomu Sasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Tsuzuki S, Kimoto Y, Yamasaki M, Sugawara T, Manabe Y, Inoue K, Sasaki T. Assessment of direct binding interaction between CD36 and its potential lipid ligands using a peptide mimic of the receptor labeled with a fluorophore. Biomed Res 2021; 42:181-191. [PMID: 34544994 DOI: 10.2220/biomedres.42.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cluster of differentiation 36 (CD36) is a cell-surface receptor that recognizes diverse substances. We have presented indirect evidence that a short segment of the receptor comprising amino acids 149-168 contains a site for binding of its lipid ligands (e.g., distinct fatty acids and aldehydes). However, experimental support for their direct interactions is yet to be achieved. For this, we devised a fluorescence intensity assay, where a synthetic peptide consisting of CD36 amino acids 149-168 labeled with fluorescein isothiocyanate (FITC-CD36149-168) and its variant peptides were used as positive and negative probes, respectively. First, we obtained results indicating that 1-palmitoyl-2-(5-keto-6-octenedioyl)phosphatidylcholine (an established CD36 ligand) but not 1-palmitoyl-2-arachidonyl-phosphatidylcholine (a non-ligand of the receptor) bound in a saturable and specific manner to FITC-CD36149-168. Strikingly, the assay allowed us to provide the first evidence supporting direct and specific binding between the CD36 segment and fatty aldehydes (e.g., Z-11-hexadecenal). However, this method failed to illustrate specific interactions of the segment with fatty acids, such as oleic acid. Nonetheless, our findings offer further insight into the biologically relevant ligands and the role of CD36. In addition, we suggest that this fluorescence-based technique provides a convenient means to evaluate protein (peptide)-lipid interactions.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Kimoto
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Masayuki Yamasaki
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Tsutomu Sasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
5
|
Suzuki D, Sato Y, Kamasaka H, Kuriki T, Tamura H. Oiling-out effect improves the efficiency of extracting aroma compounds from edible oil. NPJ Sci Food 2020; 4:18. [PMID: 33298963 PMCID: PMC7642429 DOI: 10.1038/s41538-020-00079-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023] Open
Abstract
Volatile compounds in foods are a significant factor that affects food intake and preference. However, volatile components in edible oils are poorly understood due to a strong matrix effect. In this study, we developed a method of extracting volatile compounds from extra virgin coconut oil (EVCO) by means of oiling-out assisted liquid-liquid extraction (OA-LLE). Consequently, 44 aroma compounds were isolated and identified from only 5 g of EVCO. Various aroma compounds were detected in addition to δ-lactones. The ratio of the natural abundance of the enantiomers of δ-lactones in EVCO was also revealed. Compared with the conventional methods of solvent assisted flavor evaporation (SAFE) and head-space solid-phase micro extraction (HS-SPME), OA-LLE was able to isolate a wide range and large number of volatile compounds from EVCO without leaving oil residues. Therefore, isolating aroma compounds from edible oil based on the oiling-out effect should provide an innovative extraction method.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka, 555-8502, Japan. .,The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama-shi, Ehime, 790-8566, Japan.
| | - Yuko Sato
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka, 555-8502, Japan
| | - Hiroshi Kamasaka
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka, 555-8502, Japan
| | - Takashi Kuriki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka, 555-8502, Japan
| | - Hirotoshi Tamura
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama-shi, Ehime, 790-8566, Japan.,The Graduate School of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kagawa, 761-0795, Japan
| |
Collapse
|
6
|
Tsuzuki S. Higher Straight-Chain Aliphatic Aldehydes: Importance as Odor-Active Volatiles in Human Foods and Issues for Future Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4720-4725. [PMID: 30945546 DOI: 10.1021/acs.jafc.9b01131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to their apparent lack of health significance, higher straight-chain aliphatic aldehydes, i.e., those having alkyl chains with more than six carbon atoms, have been largely neglected in food and nutraceutical research. However, they are an important class of odor-active volatiles in human foods. Indeed, certain aldehydes, such as hexanal, E-2-nonenal, and E, E-2,4-decadienal, serve as key odorants in a range of our foods and drinks. This perspective describes the significance of higher straight-chain aliphatic aldehydes as food odorants, focusing on several representative ones, and raises the issues regarding these aldehydes to be addressed in the future.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kitashirakawa Oiwake-cho , Sakyo-ku, Kyoto 606-8502 , Japan
| |
Collapse
|
7
|
Tsuzuki S, Lee S, Kimoto Y, Sugawara T, Manabe Y, Inoue K. A role for scavenger receptor B1 as a captor of specific fatty acids in taste buds of circumvallate papillae. Biomed Res 2018; 39:295-300. [PMID: 30531159 DOI: 10.2220/biomedres.39.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Class B scavenger receptor family members, scavenger receptor B1 (SR-B1) and cluster of differentiation 36 (CD36), are broadly expressed cell-surface proteins, both of which are believed to serve as multifaceted players in lipid and lipoprotein metabolism in mammals. Because of its presence in the apical part of taste receptor cells within circumvallate taste buds and its ability to recognise long-chain fatty acids, CD36 has been believed to participate in the sensing of the lipid species within the oral cavity. However, there have been no attempts to address whether SR-B1 has such a role to date. In this study, by reverse transcription- polymerase chain reaction analysis, we detected SR-B1 mRNA in a total RNA sample isolated from the circumvallate papillae of mouse tongue. Immunohistochemical analysis of tongue sections from the animals revealed the expression of SR-B1 protein in a population of taste bud cells of circumvallate papillae. In addition, the pattern of staining in the papillae for SR-B1 agreed closely with that for CD36 in double immunostaining analysis. We performed a cell-free in-vitro assay utilising a peptide mimic of SR-B1 and provided evidence that the receptor could recognise certain of the unsaturated long-chain fatty acids such as oleic acid. Our present findings suggest an additional role for SR-B1 as a captor of specific fatty acids in the oral cavity of mammals and contribute to expanding our knowledge of the physiological function of the receptor.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Shinhye Lee
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Kimoto
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
8
|
Tsuzuki S, Kimoto Y, Lee S, Sugawara T, Manabe Y, Inoue K. A novel role for scavenger receptor B1 as a contributor to the capture of specific volatile odorants in the nasal cavity. Biomed Res 2018; 39:117-129. [PMID: 29899187 DOI: 10.2220/biomedres.39.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Class B scavenger receptors, scavenger receptor B1 (SR-B1) and cluster of differentiation 36 (CD36), are broadly expressed cell-surface proteins and are believed to serve as multifaceted players in lipid and lipoprotein metabolism in mammals. Because of its ability to recognise distinct odour-active volatile compounds and its presence in murine olfactory epithelium, CD36 has recently emerged as a participant in the detection of odorants within the nasal cavity. However, there have been no attempts to assess whether SR-B1 has such a role. In this study, we performed a cell-free in-vitro assay utilising a peptide mimic of the receptor, and demonstrated that SR-B1 could recognise aliphatic aldehydes (e.g., tetradecanal), a distinct class of volatile odorants, as potential ligands. By reverse transcription-polymerase chain reaction and western immunoblot analyses, we detected the expression of SR-B1 mRNA and protein, respectively, in mouse olfactory tissue. Finally, we immunohistochemically mapped the distribution of SR-B1 in the surface layer of olfactory epithelium in vivo, which is the first line of odorant detection. These findings uncover a novel role for SR-B1 as a contributor to the capture of specific odorants in the nasal cavity of mammals.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Kimoto
- Laboratory of Nutrition Chemistry Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University
| | - Shinhye Lee
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Manabe
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Kazuo Inoue
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|