1
|
Lv X, Liu S, Cao Y, Wu H, Zhang C, Huang B, Wang J. Multiwalled Carbon Nanotubes Promoted Biofilm Formation and Rhizosphere Colonization of Bacillus subtilis Tpb55. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7087-7098. [PMID: 39992185 DOI: 10.1021/acs.jafc.4c10818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Plant growth-promoting bacteria (PGPB) achieve effective colonization by forming a biofilm on the root surface. However, the promoting effects and mechanisms of nanomaterials on PGPB biofilm formation and rhizosphere colonization are rarely studied. This study investigated the effects and the potential mechanism of multiwalled carbon nanotubes (MWCNTs) on biofilm formation and rhizosphere colonization of PGPB Bacillus subtilis. 10 and 100 mg/L MWCNTs increased biofilm biomass, extracellular polymeric substance components, live/dead cell ratio, and spores in biofilms. MWCNTs induced B. subtilis Tpb55 upregulated gene expressions of malL, sacX, tasA-tapA, and epsA-O correlated with carbohydrate metabolism and biofilm formation. MWCNTs first stimulated Tpb55 flagellar motility and then increased biofilm formation, thus promoting colonization in the tobacco rhizosphere. Greenhouse experiments showed that the combination of MWCNTs and Tpb55 reduced the occurrence of tobacco black shank. Therefore, MWCNTs have broad application potential in enhancing the effectiveness of PGPB in agricultural disease control and yield enhancement.
Collapse
Affiliation(s)
- Xiaolin Lv
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shanshan Liu
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Huagen Wu
- Jiangxi Provincial Tobacco Company Fuzhou Company, Fuzhou 344699, China
| | - Chengsheng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
2
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
3
|
Anderson AJ, Hortin JM, Jacobson AR, Britt DW, McLean JE. Changes in Metal-Chelating Metabolites Induced by Drought and a Root Microbiome in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1209. [PMID: 36986899 PMCID: PMC10055107 DOI: 10.3390/plants12061209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The essential metals Cu, Zn, and Fe are involved in many activities required for normal and stress responses in plants and their microbiomes. This paper focuses on how drought and microbial root colonization influence shoot and rhizosphere metabolites with metal-chelation properties. Wheat seedlings, with and without a pseudomonad microbiome, were grown with normal watering or under water-deficit conditions. At harvest, metal-chelating metabolites (amino acids, low molecular weight organic acids (LMWOAs), phenolic acids, and the wheat siderophore) were assessed in shoots and rhizosphere solutions. Shoots accumulated amino acids with drought, but metabolites changed little due to microbial colonization, whereas the active microbiome generally reduced the metabolites in the rhizosphere solutions, a possible factor in the biocontrol of pathogen growth. Geochemical modeling with the rhizosphere metabolites predicted Fe formed Fe-Ca-gluconates, Zn was mainly present as ions, and Cu was chelated with the siderophore 2'-deoxymugineic acid, LMWOAs, and amino acids. Thus, changes in shoot and rhizosphere metabolites caused by drought and microbial root colonization have potential impacts on plant vigor and metal bioavailability.
Collapse
Affiliation(s)
- Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Joshua M. Hortin
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
| | - Astrid R. Jacobson
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322, USA
| | - David W. Britt
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Joan E. McLean
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
4
|
Bhatia R, Gulati D, Sethi G. Biofilms and nanoparticles: applications in agriculture. Folia Microbiol (Praha) 2021; 66:159-170. [PMID: 33528768 DOI: 10.1007/s12223-021-00851-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023]
Abstract
A profound need to explore eco-friendly methods to practice sustainable agriculture leads to the research and exploration of plant growth-promoting rhizobacteria (PGPRs). Biofilms are assemblages of microbial communities within a self-secreted exopolymeric matrix, adhering to different biotic and abiotic surfaces and performing a variety of desired and undesired functions. Biofilm formation by PGPRs is governed by effective root colonization of the host plant in providing plant growth promotion and stress management. Biofilms can also provide a suitable environment for the synthesis and entrapment of nanoparticles. Together, nanoparticles and PGPRs may contribute towards biocontrol and crop management. This review discusses the significance of biofilms in agriculture and their confluence with different types of nanoparticles for plant protection and improved crop production.
Collapse
Affiliation(s)
- Ranjana Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| | - Divij Gulati
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Gavin Sethi
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
5
|
Potter M, Hanson C, Anderson AJ, Vargis E, Britt DW. Abiotic stressors impact outer membrane vesicle composition in a beneficial rhizobacterium: Raman spectroscopy characterization. Sci Rep 2020; 10:21289. [PMID: 33277560 PMCID: PMC7719170 DOI: 10.1038/s41598-020-78357-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have roles in cell-to-cell signaling, biofilm formation, and stress responses. Here, the effects of abiotic stressors on OMV contents and composition from biofilm cells of the plant health-promoting bacterium Pseudomonas chlororaphis O6 (PcO6) are examined. Two stressors relevant to this root-colonizing bacterium were examined: CuO nanoparticles (NPs)-a potential fertilizer and fungicide- and H2O2-released from roots during plant stress responses. Atomic force microscopy revealed 40-300 nm diameter OMVs from control and stressed biofilm cells. Raman spectroscopy with linear discriminant analysis (LDA) was used to identify changes in chemical profiles of PcO6 cells and resultant OMVs according to the cellular stressor with 84.7% and 83.3% accuracies, respectively. All OMVs had higher relative concentrations of proteins, lipids, and nucleic acids than PcO6 cells. The nucleic acid concentration in OMVs exhibited a cellular stressor-dependent increase: CuO NP-induced OMVs > H2O2-induced OMVs > control OMVs. Biochemical assays confirmed the presence of lipopolysaccharides, nucleic acids, and protein in OMVs; however, these assays did not discriminate OMV composition according to the cellular stressor. These results demonstrate the sensitivity of Raman spectroscopy using LDA to characterize and distinguish cellular stress effects on OMVs composition and contents.
Collapse
Affiliation(s)
- Matthew Potter
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Cynthia Hanson
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Anne J Anderson
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA.
| | - David W Britt
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
6
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
7
|
Zhou Y, Gao X. Characterization of Biofilm Formed by Phenanthrene-Degrading Bacteria on Rice Root Surfaces for Reduction of PAH Contamination in Rice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2002. [PMID: 31195653 PMCID: PMC6603869 DOI: 10.3390/ijerph16112002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023]
Abstract
One effective method in to reduce the uptake of organic contaminants by plants is the development of a root barrier. In this study, the characterization of biofilm structure and function by phenanthrene-degrading Pseudomonas sp. JM2-gfp on rice root surfaces were carried out. Our results showed that root surfaces from three rice species, namely Liaojing401, Koshihikari, and Zhenzhuhong all present hydrophobicity and a high initial adhesion of strain JM2-gfp. Matured robust biofilm formation occurred at 48 h on the root surfaces. The biofilm exhibited cell dense aggregates and biomass embedded in the extracellular polymeric substance (EPS) matrix. EPS composition results showed that the proteins, carbohydrates, lipids and nucleic acids are produced in the biofilm, while the content varied with rice species. Under the initial concentration of phenanthrene 50 mg·L-1, the residual phenanthrene in plant roots from 'Zhengzhuhong', 'Koshihikari' and 'Liaojing401' with biofilm mediated were significantly decreased by 71.9%, 69.3% and 58.7%, respectively, compared to those without biofilm groups after 10 days of exposure. Thus, the biofilm colonized on roots plays an important role of degradation in order to reduce the level of phenanthrene uptake of plants. Thereby, the present work provides significant new insights into lowering the environmental risks of polycyclic aromatic hydrocarbons (PAHs) in crop products from contaminated agriculture soils.
Collapse
Affiliation(s)
- Yuman Zhou
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, China.
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, China.
| |
Collapse
|
8
|
Jacobson A, Doxey S, Potter M, Adams J, Britt D, McManus P, McLean J, Anderson A. Interactions Between a Plant Probiotic and Nanoparticles on Plant Responses Related to Drought Tolerance. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2017.0033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Astrid Jacobson
- Department of Plants, Soils and Climate, Utah Water Research Laboratory, Utah State University, Logan, UT
| | - Stephanie Doxey
- Department of Biology, Utah Water Research Laboratory, Utah State University, Logan, UT
| | - Matthew Potter
- Department of Bioengineering, Utah Water Research Laboratory, Utah State University, Logan, UT
| | - Joshua Adams
- Department of Bioengineering, Utah Water Research Laboratory, Utah State University, Logan, UT
| | - David Britt
- Department of Bioengineering, Utah Water Research Laboratory, Utah State University, Logan, UT
| | - Paul McManus
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory, Utah State University, Logan, UT
| | - Joan McLean
- Department of Civil and Environmental Engineering, Utah Water Research Laboratory, Utah State University, Logan, UT
| | - Anne Anderson
- Department of Biology, Utah Water Research Laboratory, Utah State University, Logan, UT
- Department of Bioengineering, Utah Water Research Laboratory, Utah State University, Logan, UT
| |
Collapse
|