1
|
Kumar P, Bhardwaj VK, Purohit R. Dispersion-corrected DFT calculations and umbrella sampling simulations to investigate stability of Chrysin-cyclodextrin inclusion complexes. Carbohydr Polym 2023; 319:121162. [PMID: 37567706 DOI: 10.1016/j.carbpol.2023.121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
The study of inclusion complexes of Chrysin (ChR) with three forms of cyclodextrins (CDs) α-, β-, and γ-CD was accomplished to examine the stability of ChR inside the central cavities of CDs. The aim of study was to identify the most suitable form of CD to improve the hydro-solubility of poorly soluble ChR bioactive molecule. Microsecond timescale molecular dynamics (MD) simulations were performed on four inclusion complexes (α-CD/ChR, β-CD/ChR, and two conformations of γ-CD/ChR) to examine the dynamics of ChR inside the cavity of CDs. The first conformation of γ-CD/ChR inclusion complex (γ-CD1/ChR) was identified to possess the highest affinity between host and guest molecule on the basis of binding energy calculated by employing Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and umbrella sampling simulations. To further strengthen the claims of classical and biased MD studies, Our own N-layered Integrated molecular Orbital and Molecular mechanics (ONIOM) (wB97XD/6-311+g(d,p):pm7) calculations were performed on the selected inclusion complexes. The ONIOM based complexation energy reaffirmed that ChR had highest affinity for the γ-CD1 host molecule. Further, the non-covalent interaction analysis was conducted using Multiwfn software on QM-optimized inclusion complexes with wB97XD/6-311+G(d,p) model chemistry, revealing non-covalent interactions between ChR and CDs. This atomic level information helped us to gain better insights into critical atoms of ChR and CD that participated in intermolecular interactions and identify γ-CD as a suitable host molecule for improving the hydro-solubulity of ChR. The structural insights would help to derive new derivatives of γ-CD with better host capacity.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
2
|
Shimada T, Nagayoshi H, Murayama N, Sawai A, Kim V, Kim D, Yamazaki H, Guengerich FP, Takenaka S. Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives having 5,7-dihydroxyl moieties by human cytochromes P450 1B1 and 2A13. Xenobiotica 2022; 52:134-145. [PMID: 35387543 PMCID: PMC9896170 DOI: 10.1080/00498254.2022.2062486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives containing 5,7-dihydroxyl groups by human cytochrome P450 (P450 or CYP) 1B1 and 2A13 was determined using LC-MS/MS systems.3'-Methoxyflavone and 4'-methoxyflavone were mainly O-demethylated to form 3'-hydroxyflavone and 4'-hydroxyflavone, respectively, and then 3',4'-dihydroxyflavone at higher rates with CYP1B1 than with CYP2A13. 4'-Methoxy-5,7-dihydroxyflavone (acacetin) was found to be demethylated by CYP1B1 and 2A13 to form 4',5,7-trihydroxyflavone (apigenin) at rates of 0.098-1 and 0.42 min-1, respectively. 3'-Methoxy-5,7-dihydroxyflavone was also demethylated by both P450s, with CYP2A13 being more active.3',4'-Dimethoxyflavone was a good substrate for CYP1B1 but not for CYP2A13 and was found to be mainly O-demethylated to form 3',4'-dihydroxyflavone (at a rate of 4.2 min-1) and also several ring-oxygenated products having m/z 299 fragments. Molecular docking analysis supported the proper orientation for formation of these products by CYP1B1.Our present results showed that 3'- and 4'-methoxyflavone can be oxidised to their O-demethylated products and, to a lesser extent, to ring oxidation products by both P450s 1B1 and 2A13 and that 3',4'-dimethoxyflavone is a good substrate for CYP1B1 in forming both O-demethylated and ring-oxidation products. Introduction of a 57diOHF moiety into these methoxylated flavonoids caused decreased in oxidation by CYP1B1 and 2A13.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Atsuki Sawai
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| |
Collapse
|
3
|
Ai Y, Liu J, Yan L, Li G, Wang X, Sun W. Banana peel derived biomass carbon: Multi‐walled carbon nanotube composite modified electrode for sensitive voltammetric detection of baicalein. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yijing Ai
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| | - Juan Liu
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao China
| | - Lijun Yan
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| | - Guangjiu Li
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao China
| | - Xianghui Wang
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| | - Wei Sun
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou China
| |
Collapse
|
4
|
Grogan G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS AU 2021; 1:1312-1329. [PMID: 34604841 PMCID: PMC8479775 DOI: 10.1021/jacsau.1c00251] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/15/2023]
Abstract
The selective oxygenation of nonactivated carbon atoms is an ongoing synthetic challenge, and biocatalysts, particularly hemoprotein oxygenases, continue to be investigated for their potential, given both their sustainable chemistry credentials and also their superior selectivity. However, issues of stability, activity, and complex reaction requirements often render these biocatalytic oxygenations problematic with respect to scalable industrial processes. A continuing focus on Cytochromes P450 (P450s), which require a reduced nicotinamide cofactor and redox protein partners for electron transport, has now led to better catalysts and processes with a greater understanding of process requirements and limitations for both in vitro and whole-cell systems. However, the discovery and development of unspecific peroxygenases (UPOs) has also recently provided valuable complementary technology to P450-catalyzed reactions. UPOs need only hydrogen peroxide to effect oxygenations but are hampered by their sensitivity to peroxide and also by limited selectivity. In this Perspective, we survey recent developments in the engineering of proteins, cells, and processes for oxygenations by these two groups of hemoproteins and evaluate their potential and relative merits for scalable reactions.
Collapse
|
5
|
Leonard W, Zhang P, Ying D, Adhikari B, Fang Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol Adv 2021; 49:107763. [PMID: 33961978 DOI: 10.1016/j.biotechadv.2021.107763] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
Phenolics are a group of compounds derived from plants that have displayed potent biological activities and health-promoting effects. Fermentation is one of the most conventional but still prevalent bioprocessing methods in the food industry, with the potential to increase phenolic content and enhance its nutritive value. This review details the biotransformation of different classes of phenolics (hydroxycinnamic and hydroxybenzoic acids, flavonoids, tannins, stilbenoids, lignans, alkylresorcinols) by various microorganisms (lactic acid bacteria, yeast, filamentous fungi) throughout the fermentation process in plant-based foods. Several researchers have commenced the use of metabolic engineering, as in recombinant Saccharomyces cerevisiae yeast and Escherichia coli, to enhance the production of this transformation. The impact of phenolics on the metabolism of microorganisms and fermentation process, although complex, is reviewed for the first time. Moreover, this paper highlights the general effect of fermentation on the food's phenolic content, and its bioaccessibility, bioavailability and bioactivities including antioxidant capacity, anti-cancer, anti-diabetic, anti-inflammation, anti-obesity properties. Phenolics of different classes are converted into compounds that are often more bioactive than the parent compounds, and fermentation generally leads to a higher phenolic content and antioxidant activity in most studies. However, biotransformation of several phenolic classes is less studied due to its low concentration and apparent insignificance to the food system. Therefore, there is potential for application of metabolic engineering to further enhance the content of different phenolic classes and bioactivities in food.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danyang Ying
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Mehta L, Grover P, Naved T, Mukherjee D. Metabolite Detection and Profiling Using Analytical Methods. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190906142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop effective and safe drugs and to take them to the market in short period of time is
the mission of pharmaceutical research companies. A selection of few of the lead compounds are done
for the evaluation of safety and their ADMET (absorption, distribution, metabolism, excretion and toxicology)
properties are tested in in-vitro (test systems), in-vivo (living organisms) and in-silico (computational
methods). From initial stages to final stages of modern drug discovery processes, the vital tool
for detecting and characterizing metabolites is MS (Mass spectrometry) hyphenated with other techniques.
The methods used for generation of metabolites are in vitro techniques and cell lines (containing
expressing drug metabolizing enzymes and heterologous genes). The use of HPLC-MS/UPLC-MS
and high resolution MS, enables the in depth metabolite detection and profiling studies and it may also
be likely to identify and characterize the site and types of biotransformation.
Collapse
Affiliation(s)
| | - Parul Grover
- KIET School of Pharmacy, KIET Institute, Ghaziabad, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | | |
Collapse
|
7
|
Enhancement of anti-acne effect of Scutellaria baicalensis extract by fermentation with symbiotic fungus Penicillium decumbens. J Biosci Bioeng 2020; 130:457-463. [PMID: 32747300 DOI: 10.1016/j.jbiosc.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
Inflammatory responses stimulated by Propionibacterium acnes have been shown to be major etiological factors in the pathogenesis of acne. Scutellaria baicalensis, a popular traditional Chinese medicine, has been widely shown to have anti-inflammatory effects. In this study, primary component analysis and primary effective component analysis were conducted. The results showed that wogonin (1.15 mg/g S. baicalensis extract) possessed better anti-acne effects than wogonoside (8.71 mg/g S. baicalensis extract) in inhibiting the up-regulation of IL-1β and IL-8 level caused by P. acnes via inactivation of the MAPK and NF-κB signaling pathways. To enhance the anti-acne effects of S. baicalensis extract, an environmentally friendly and healthy plant fermentation strategy was used to efficiently convert glycoside-type constituents into bioactive aglycone. S. baicalensis extract was fermented by symbiotic fungus Penicillium decumbens f3-1 to transform wogonoside into wogonin with a conversion rate of 91.0% after 4 days. Fermented S. baicalensis extract (FSE) showed higher potential anti-acne effects than non-fermented S. baicalensis extract (NSE) by inhibiting the up-regulation of IL-1β and IL-8. Thus, P. decumbens-fermented S. baicalensis Extract may be used for developing new anti-acne cosmetic ingredients.
Collapse
|
8
|
Bhardwaj M, Chib S, Kaur L, Kumar A, Chaudhuri B, Malik F, Vishwakarma RA, Saran S, Mukherjee D. Conversion of amino acids to aryl/heteroaryl ethanol metabolites using human CYP2D6-expressing live baker's yeast. RSC Med Chem 2020; 11:142-147. [PMID: 33479614 PMCID: PMC7439282 DOI: 10.1039/c9md00451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
Different natural aromatic/heterocyclic l-amino acids were biotransformed into aryl/heteroaryl ethanol metabolites via oxidative deamination, decarboxylation and reduction cascades using live baker's yeast cells producing intracellular human CYP2D6 enzyme. Among the three yeast strains expressing 3 different CYP2D6 variants, CYP2D6(2) (i.e. CYP2D6 wild-type) provided the best result under neutral pH conditions at RT. We have successfully converted six natural amino acids into their corresponding alcohols, having one carbon atom less, with moderate yields. Some of the downstream products like tryptophol and tyrosol induced the pTrKB (Tropomyosin receptor kinase B) activation pattern similar to that of BDNF (brain-derived neurotrophic factor), thereby depicting potential antidepressant activity. Control experiments and molecular modelling studies revealed that this tandem bio-transformation probably happens via a pyruvate intermediate. This study establishes that CYP2D6-expressing live yeast cells can be a powerful tool for the enzymatic C-N, C-C bond cleavage of amino-acids.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Natural Product Chemistry Division , CSIR-IIIM , Jammu , India .
| | - Shifali Chib
- Fermentation Technology Division , CSIR-IIIM , Jammu , India .
| | - Loveleena Kaur
- Cancer Pharmacology Division , Indian Institute of Integrative Medicine (IIIM) , Jammu , India
| | - Amit Kumar
- Natural Product Chemistry Division , CSIR-IIIM , Jammu , India .
| | - Bhabatosh Chaudhuri
- Innovation Development Partners Ltd. Rothley , Leicestershire LE7 7SF , UK .
| | - Fayaz Malik
- Cancer Pharmacology Division , Indian Institute of Integrative Medicine (IIIM) , Jammu , India
| | | | - Saurabh Saran
- Fermentation Technology Division , CSIR-IIIM , Jammu , India .
| | | |
Collapse
|
9
|
Wang H, Yuan S, Zhou M, Guo L. A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUT‐9/Mesoporous Carbon Composite. ELECTROANAL 2019. [DOI: 10.1002/elan.201900496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haixu Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Shuang Yuan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| |
Collapse
|
10
|
Nagayoshi H, Murayama N, Kakimoto K, Tsujino M, Takenaka S, Katahira J, Lim YR, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Oxidation of Flavone, 5-Hydroxyflavone, and 5,7-Dihydroxyflavone to Mono-, Di-, and Tri-Hydroxyflavones by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2019; 32:1268-1280. [PMID: 30964977 DOI: 10.1021/acs.chemrestox.9b00078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biologically active plant flavonoids, including 5,7-dihydroxyflavone (57diOHF, chrysin), 4',5,7-trihydroxyflavone (4'57triOHF, apigenin), and 5,6,7-trihydroxyflavone (567triOHF, baicalein), have important pharmacological and toxicological significance, e.g., antiallergic, anti-inflammatory, antioxidative, antimicrobial, and antitumorgenic properties. In order to better understand the metabolism of these flavonoids in humans, we examined the oxidation of flavone, 5-hydroxyflavone (5OHF), and 57diOHF to various products by human cytochrome P450 (P450 or CYP) and liver microsomal enzymes. Individual human P450s and liver microsomes oxidized flavone to 6-hydroxyflavone, small amounts of 5OHF, and 11 other monohydroxylated products at different rates and also produced several dihydroxylated products (including 57diOHF and 7,8-dihydroxyflavone) from flavone. We also found that 5OHF was oxidized by several P450 enzymes and human liver microsomes to 57diOHF and further to 567triOHF, but the turnover rates in these reactions were low. Interestingly, both CYP1B1.1 and 1B1.3 converted 57diOHF to 567triOHF at turnover rates (on the basis of P450 contents) of >3.0 min-1, and CYP1A1 and 1A2 produced 567triOHF at rates of 0.51 and 0.72 min-1, respectively. CYP2A13 and 2A6 catalyzed the oxidation of 57diOHF to 4'57triOHF at rates of 0.7 and 0.1 min-1, respectively. Our present results show that different P450s have individual roles in oxidizing these phytochemical flavonoids and that these reactions may cause changes in their biological and toxicological properties in mammals.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Kensaku Kakimoto
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Masaki Tsujino
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , 3-7-30 , Habikino , Osaka 583-8555 , Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - Young-Ran Lim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Donghak Kim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| |
Collapse
|
11
|
Williams I, Gatchie L, Bharate SB, Chaudhuri B. Biotransformation, Using Recombinant CYP450-Expressing Baker's Yeast Cells, Identifies a Novel CYP2D6.10 A122V Variant Which Is a Superior Metabolizer of Codeine to Morphine Than the Wild-Type Enzyme. ACS OMEGA 2018; 3:8903-8912. [PMID: 31459022 PMCID: PMC6644518 DOI: 10.1021/acsomega.8b00809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/30/2018] [Indexed: 05/29/2023]
Abstract
CYP2D6, a cytochrome P450 (CYP) enzyme, metabolizes codeine to morphine. Within the human body, 0-15% of codeine undergoes O-demethylation by CYP2D6 to form morphine, a far stronger analgesic than codeine. Genetic polymorphisms in wild-type CYP2D6 (CYP2D6-wt) are known to cause poor-to-extensive metabolism of codeine and other CYP2D6 substrates. We have established a platform technology that allows stable expression of human CYP genes from chromosomal loci of baker's yeast cells. Four CYP2D6 alleles, (i) chemically synthesized CYP2D6.1, (ii) chemically synthesized CYP2D6-wt, (iii) chemically synthesized CYP2D6.10, and (iv) a novel CYP2D6.10 variant CYP2D6-C (i.e., CYP2D6.10A122V) isolated from a liver cDNA library, were cloned for chromosomal integration in yeast cells. When expressed in yeast, CYP2D6.10 enzyme shows weak activity compared with CYP2D6-wt and CYP2D6.1 which have moderate activity, as reported earlier. Surprisingly, however, the CYP2D6-C enzyme is far more active than CYP2D6.10. More surprisingly, although CYP2D6.10 is a known low metabolizer of codeine, yeast cells expressing CYP2D6-C transform >70% of codeine to morphine, which is more than twice that of cells expressing the extensive metabolizers, CYP2D6.1, and CYP2D6-wt. The latter two enzymes predominantly catalyze formation of codeine's N-demethylation product, norcodeine, with >55% yield. Molecular modeling studies explain the specificity of CYP2D6-C for O-demethylation, validating observed experimental results. The yeast-based CYP2D6 expression systems, described here, could find generic use in CYP2D6-mediated drug metabolism and also in high-yield chemical reactions that allow the formation of regio-specific dealkylation products.
Collapse
Affiliation(s)
- Ibidapo
S. Williams
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Linda Gatchie
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Bhabatosh Chaudhuri
- CYP
Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| |
Collapse
|
12
|
Qiao J, Zhang Y, Lei S, Liu Z, Li G, Ye B. Sensitive determination of baicalein based on functionalized graphene loaded RuO 2 nanoparticles modified glassy carbon electrode. Talanta 2018; 188:714-721. [PMID: 30029437 DOI: 10.1016/j.talanta.2018.06.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
The nanocomposite of ruthenium oxide (RuO2) loaded on Poly-(dimethyldiallylammonium chloride) (PDDA) functionalized reduced graphene oxide (RuO2-PDDA-rGO) was synthesized based on a one-step method. Based on the RuO2-PDDA-rGO modified glassy carbon electrode (GCE), a new electrochemical sensor (RuO2-PDDA-rGO/GCE) was fabricated and used in detection of baicalein for the first time. Compared with other reported electrochemical sensors for the detection of baicalein, the prepared RuO2-PDDA-rGO/GCE had a wider linear range (2-400 nM) and lower detection limit (0.6 nM, S/N = 3). The other advantages were the excellent repeatability of proposed method and good stability of prepared sensor.
Collapse
Affiliation(s)
- Jiantong Qiao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yulong Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
13
|
Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil. Appl Microbiol Biotechnol 2018; 102:5585-5598. [DOI: 10.1007/s00253-018-9043-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 01/31/2023]
|