1
|
Yu X, Gao H, Wang P. Transcriptome and nutritional composition analysis of stacked transgenic maize with insect resistance and herbicide tolerance. GM CROPS & FOOD 2025; 16:216-234. [PMID: 40016872 PMCID: PMC11875497 DOI: 10.1080/21645698.2025.2472451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
The safety assessment of stacked transgenic crops is essential for their commercial cultivation. A crucial element of safety assessment is the nutritional evaluation of transgenic crops. Currently, profiling methods like transcriptome are employed as supplemental analytical tools to find the unintended effects of transgenic crops. In this study, stacked transgenic maize ZDRF8×nCX-1 was produced by crossing of two transgenic maize events ZDRF8 and nCX-1. This stacked transgenic maize expresses five genes: cry1Ab, cry2Ab and g10evo-epsps (from ZDRF8), as well as cp4 epsps and P450-N-Z1 (from nCX-1). Molecular analysis showed that the insertion sites of target genes were not changed during stack breeding, and the target genes are effectively expressed at both RNA and protein levels in ZDRF8×nCX-1. Target trait analysis showed that ZDRF8×nCX-1 exhibits tolerant to glyphosate, flazasulfuron and MCPA, and is resistant to damage by corn borers. Transcriptome analysis revealed that gene-stacked maize ZDRF8×nCX-1 did not significantly alter transcriptome profiles compared to the transgenic maize events ZDRF8 and nCX-1. Nutritional composition analysis showed that the grain profile of ZDRF8×nCX-1 was substantially equivalent to that of the non-transgenic counterpart. These results suggest that hybrid stacking does not cause significantly unintended effects beyond providing the intended beneficial traits.
Collapse
Affiliation(s)
- Xiaoxing Yu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Research Center for BioDesign and Breeding, Zhejiang University Zhongyuan Institute, Zhengzhou, China
| | - Hongyu Gao
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Pengfei Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang X, Niu S, Yang J, Dong Y, Liu X, Jiao Y, Wang Z. Effects of stacking breeding on the methylome and transcriptome profile of transgenic rice with glyphosate tolerance. PLANTA 2023; 258:34. [PMID: 37378818 DOI: 10.1007/s00425-023-04181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
MAIN CONCLUSION Transcriptomics and methylomics were used to identify the potential effects resulting from GM rice breeding stacks, which provided scientific data for the safety assessment strategy of stacked GM crops in China. Gene interaction is one of the main concerns for stacked genetically modified crop safety. With the development of technology, the combination of omics and bioinformatics has become a useful tool to evaluate the unintended effects of genetically modified crops. In this study, transcriptomics and methylomics were used as molecular profiling techniques to identify the potential effects of stack through breeding. Stacked transgenic rice En-12 × Ec-26 was used as material, which was obtained through hybridization using parents En-12 and Ec-26, in which the foreign protein can form functional EPSPS protein by intein-mediated trans-splitting. Differentially methylated region (DMR) analysis showed that the effect of stacking breeding on methylation was less than that of genetic transformation at the methylome level. Differentially expressed gene (DEG) analysis showed that the DEGs between En-12 × Ec-26 and its parents were far fewer than those between transgenic rice and Zhonghua 11 (ZH11), and no unintended new genes were found in En-12 × Ec-26. Statistical analysis of gene expression and methylation involved in shikimic acid metabolism showed that there was no difference in gene expression, although there were 16 and 10 DMR genes between En-12 × Ec-26 and its parents (En and Ec) in methylation, respectively. The results indicated that the effect of stacking breeding on gene expression and DNA methylation was less than the effect of genetic transformation. This study provides scientific data supporting safety assessments of stacked GM crops in China.
Collapse
Affiliation(s)
- Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Shance Niu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Yufeng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Cropedit Biotechnology Co., Ltd, Beijing, 102206, China
| | - Xiaojing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China
| | - Yue Jiao
- Development Center for Science and Technology, MARA, Beijing, 100122, China.
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory on Molecular Safety Assessment of Agri-GMO, MARA, Beijing, 100081, China.
| |
Collapse
|
3
|
Almeida MF, Tavares CS, Araújo EO, Picanço MC, Oliveira EE, Pereira EJG. Plant Resistance in Some Modern Soybean Varieties May Favor Population Growth and Modify the Stylet Penetration of Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:970-978. [PMID: 33625491 DOI: 10.1093/jee/toab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Complaints of severe damage by whiteflies in soybean fields containing genetically engineered (GE) varieties led us to investigate the role of transgenic soybean varieties expressing resistance to some insects (Cry1Ac Bt toxin) and to herbicide (glyphosate) on the population growth and feeding behavior of Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae). In the laboratory, the whiteflies reared on the GE Bt soybeans had a net reproductive rate (R0) 100% higher and intrinsic rate of population increase (rm) 15% higher than those reared on non-GE soybeans. The increased demographic performance was associated with a higher lifetime fecundity. In electrical penetration graphs, the whiteflies reared on the GE soybeans had fewer probes and spent 50% less time before reaching the phloem phase from the beginning of the first successful probe, indicating a higher risk of transmission of whitefly-borne viruses. Data from Neotropical fields showed a higher population density of B. tabaci on two soybean varieties expressing glyphosate resistance and Cry1Ac Bt toxin. These results indicate that some GE soybean varieties expressing insect and herbicide resistances can be more susceptible to whiteflies than non-GE ones or those only expressing herbicide resistance. Most likely, these differences are related to varietal features that increase host-plant susceptibility to whiteflies. Appropriate pest management may be needed to deal with whiteflies in soybean fields, especially in warm regions, and breeders may want to consider the issue when developing new soybean varieties.
Collapse
Affiliation(s)
- Mauricélia F Almeida
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Center for Agricultural Sciences, Universidade Estadual da Região Tocantina do Maranhão, Imperatriz, MA, Brazil
| | - Clébson S Tavares
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Euires O Araújo
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo C Picanço
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Eugênio E Oliveira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Eliseu José G Pereira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
4
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
5
|
Jose M, Vertuan H, Soares D, Sordi D, Bellini LF, Kotsubo R, Berger GU. Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton. PLoS One 2020; 15:e0231733. [PMID: 32339186 PMCID: PMC7185713 DOI: 10.1371/journal.pone.0231733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Genetically modified (GM) crops are one of the most valuable tools of modern biotechnology that secure yield potential needed to sustain the global agricultural demands for food, feed, fiber, and energy. Crossing single GM events through conventional breeding has proven to be an effective way to pyramid GM traits from individual events and increase yield protection in the resulting combined products. Even though years of research and commercialization of GM crops show that these organisms are safe and raise no additional biosafety concerns, some regulatory agencies still require risk assessments for these products. We sought out to investigate whether stacking single GM events would have a significant impact on agronomic and phenotypic plant characteristics in soybean, maize, and cotton. Several replicated field trials designed as randomized complete blocks were conducted by Monsanto Regulatory Department from 2008 to 2017 in field sites representative of cultivation regions in Brazil. In total, twenty-one single and stacked GM materials currently approved for in-country commercial use were grown with the corresponding conventional counterparts and commercially available GM/non-GM references. The generated data were presented to the Brazilian regulatory agency CTNBio (National Biosafety Technical Committee) over the years to request regulatory approvals for the single and stacked products, in compliance with the existing normatives. Data was submitted to analysis of variance and differences between GM and control materials were assessed using t-test with a 5% significance level. Data indicated the predominance of similarities and neglectable differences between single and stacked GM crops when compared to conventional counterpart. Our results support the conclusion that combining GM events through conventional breeding does not alter agronomic or phenotypic plant characteristics in these stacked crops. This is compatible with a growing weight of evidence that indicates this long-adopted strategy does not increase the risks associated with GM materials. It also provides evidence to support the review and modernization of the existing regulatory normatives to no longer require additional risk assessments of GM stacks comprised of previously approved single events for biotechnology-derived crops. The data analyzed confirms that the risk assessment of the individual events is sufficient to demonstrate the safety of the stacked products, which deliver significant benefits to growers and to the environment.
Collapse
Affiliation(s)
- Marcia Jose
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | | - Daniel Soares
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Daniel Sordi
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Luiz F. Bellini
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | - Rafael Kotsubo
- Regulatory Science, Bayer Crop Science., São Paulo, SP, Brazil
| | | |
Collapse
|
6
|
Riter LS, Sall ED, Pai N, Beachum CE, Orr TB. Quantifying Dicamba Volatility under Field Conditions: Part I, Methodology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2277-2285. [PMID: 31990538 DOI: 10.1021/acs.jafc.9b06451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative assessment of the volatility of field applied herbicides requires orchestrated sampling logistics, robust analytical methods, and sophisticated modeling techniques. This manuscript describes a comprehensive system developed to measure dicamba volatility in an agricultural setting. Details about study design, sample collection, analytical chemistry, and flux modeling are described. A key component of the system is the interlaboratory validation of an analytical method for trace level detection (limit of quantitation of 1.0 ng/PUF) of dicamba in polyurethane foam (PUF) air samplers. Validation of field sampling and flux methodologies was conducted in a field trial that demonstrated agreement between predicted and directly measured dicamba air concentrations at a series of off-target locations. This validated system was applied to a field case study on two plots to demonstrate the utility of these methods under typical agricultural conditions. This case study resulted in a time-varying volatile flux profile, which showed that less than 0.2 ± 0.05% of the applied dicamba was volatilized over the 3-day sampling period.
Collapse
Affiliation(s)
- Leah S Riter
- Regulatory Sciences , Bayer U.S.-Crop Science , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Erik D Sall
- Regulatory Sciences , Bayer U.S.-Crop Science , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Naresh Pai
- Regulatory Sciences , Bayer U.S.-Crop Science , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Collin E Beachum
- Regulatory Sciences , Bayer U.S.-Crop Science , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Thomas B Orr
- Regulatory Sciences , Bayer U.S.-Crop Science , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| |
Collapse
|
7
|
Huo J, Barnych B, Li Z, Wan D, Li D, Vasylieva N, Knezevic SZ, Osipitan OA, Scott JE, Zhang J, Hammock BD. Hapten Synthesis, Antibody Development, and a Highly Sensitive Indirect Competitive Chemiluminescent Enzyme Immunoassay for Detection of Dicamba. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5711-5719. [PMID: 31042038 PMCID: PMC6873229 DOI: 10.1021/acs.jafc.8b07134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although dicamba has long been one of the most widely used selective herbicides, some U.S. states have banned the sale and use of dicamba because of farmers complaints of drift and damage to nonresistant crops. To prevent illegal use of dicamba and allow monitoring of nonresistant crops, a rapid and sensitive method for detection of dicamba is critical. In this paper, three novel dicamba haptens with an aldehyde group were synthesized, conjugated to the carrier protein via a reductive-amination procedure and an indirect competitive chemiluminescent enzyme immunoassay (CLEIA) for dicamba was developed. The assay showed an IC50 of 0.874 ng/mL which was over 15 times lower than that of the conventional enzyme immunoassay. The immunoassay was used to quantify dicamba concentrations in field samples of soil and soybean obtained from fields sprayed with dicamba. The developed CLEIA showed an excellent correlation with LC-MS analysis in spike-and-recovery studies, as well as in real samples. The recovery of dicamba ranged from 86 to 108% in plant samples and from 105 to 107% in soil samples. Thus, this assay is a rapid and simple analytical tool for detecting and quantifying dicamba levels in environmental samples and potentially a great tool for on-site crop and field monitoring.
Collapse
Affiliation(s)
- Jingqian Huo
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Dongyang Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Stevan Z. Knezevic
- Haskell Agricultural Laboratory, University of Nebraska Lincoln, Concord, NE, 68728
| | - O. Adewale Osipitan
- Haskell Agricultural Laboratory, University of Nebraska Lincoln, Concord, NE, 68728
| | - Jon E. Scott
- Haskell Agricultural Laboratory, University of Nebraska Lincoln, Concord, NE, 68728
| | - Jinlin Zhang
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| |
Collapse
|
8
|
Bell E, Nakai S, Burzio LA. Stacked Genetically Engineered Trait Products Produced by Conventional Breeding Reflect the Compositional Profiles of Their Component Single Trait Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7794-7804. [PMID: 29953223 DOI: 10.1021/acs.jafc.8b02317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An expanding trend for genetically engineered (GE) crops is to cultivate varieties in which two or more single trait products have been combined using conventional breeding to produce a stacked trait product that provides a useful grouping of traits. Here, we report results from compositional analysis of several GE stacked trait products from maize and soybean. The results demonstrate that these products are each compositionally equivalent to a relevant non-GE comparator variety, except for predictable shifts in the fatty acid profile in the case of stacked trait products that contain a trait, MON 87705, that confers a high-oleic-acid phenotype in soybean. In each case, the conclusion on compositional equivalence for the stacked trait product reflects the conclusions obtained for the single trait products. These results provide strong support for conducting a reassessment of those regulatory guidelines that mandate explicit characterization of stacked trait products produced through conventional breeding.
Collapse
Affiliation(s)
- Erin Bell
- Monsanto Company , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Shuichi Nakai
- Monsanto Japan, Limited , 2-5-18 Kyobashi , Chuo-ku, Tokyo 104-0031 , Japan
| | - Luis A Burzio
- Monsanto Company , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| |
Collapse
|